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Introduction 
 
Over the years, Windows heap exploitation has continued to increase in difficulty due to the 
addition of exploitation counter measures along with the implementation of more complex 
algorithms and data structures. Due to these trends and the scarcity of comprehensive heap 
knowledge within the community, reliable exploitation has severely declined. Maintaining a 
complete understanding of the inner workings of a heap manager can be the difference 
between unpredictable failure and precise exploitation.  

 
The Low Fragmentation heap has become the default front-end heap manager for the Windows 
operating system since the introduction of Windows Vista. This new front-end manager brought 
with it a different set of data structures and algorithms that replaced the Lookaside List. The 
system has also changed the way back-end memory management works as well.  All of this 
material must be reviewed to understand the repercussions of allocating and freeing memory 
within an application on Windows 7. 
 
The main goal of this paper is to familiarize the reader with the newly created logic and data 
structures associated with the Low Fragmentation heap. First, a clear and concise foundation 
will be provided by explaining the new data structures and their coupled purpose within the 
heap manager. Then detailed explanations concerning the underlying algorithms that 
manipulate those data structures will be discussed. Finally, some newly devised exploitation 
techniques will be unveiled providing practical applications from this new found knowledge.  

Overview 
   

This paper is broken into four separate sections. The first section details the core Data 
Structures, which are used throughout the heap manager to keep track of memory. A thorough 
understanding of these data structures is a prerequisite for understanding material presented in 
the remainder of the document. 
 
The second section will discuss the newly created Architecture introduced in Windows Vista and 
carried on into Windows 7. This section shows how the use of data structures has evolved from 
the Windows XP code base.  
 
The third section will divulge in-depth information on the core Algorithms using the Windows 7 
heap. This section will detail both the front-end and back-end heap management subsystems. 
Understanding the material in this section will aid exploit development and provide the 
framework for the fourth section. 
 
The fourth and final portion of the paper shows Tactics that may be employed to use the 
underlying heap manager to produce reliable heap manipulation, seed user supplied 
information, and abuse the heap meta-data in order to achieve code execution.  
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Prior Works 
 
Although there may be much more information available regarding the Low Fragmentation 
heap, I am only listing the few resources that I used when doing my research. I believe this 
material should be viewed as prerequisite material for understanding this paper. I apologize in 
advance for anyone who I may have left out on this list. 

 

 I’m still convinced Ben Hawkes had this figured out years ago. His presentation at 
RuxCon/Blackhat in 2008 continues to be an inspiration for my work. (Hawkes 2008) 

 Nico Waisman did a tremendous job reversing Windows Vista and providing detailed 
information in the libheap.py plug-in for Immunity Debugger. (Waisman 2008).  

 Brett Moore’s paper Heaps about Heaps is, in my opinion, one of the best heap 
presentations ever devised. I think it will forever be used as a reference for a great deal 
of heap work (Moore 2007) 

 Brett Moore also published material used for exploiting the link-in process for 
FreeList[0] in Windows XP SP2, which will be directly addressed in this paper (Moore 
2005) 

 Richard Johnson’s presentation at ToorCon 2006 described the newly created Low 
Fragmentation heap for Windows Vista. This is the first (and maybe only) material that 
divulges detailed information about the algorithms and data structures. (Johnson 2006) 

 Although David B. Probert’s (Ph.D.) presentation was mainly focused on the 
performance benefits of the Low Fragmentation heap, it was still quite useful when 
attempting to understand the reasoning behind the heap implementation changes in 
Windows 7. (Probet) 

 Adrian Marinescu gave a presentation at Blackhat 2006 on the Windows Vista heap 
changes. It clearly shows the reasoning for the transition away from the previous heap 
manager. (Marinescu 2006) 

 Lastly, Lionel d’Hauenens (http://www.laboskopia.com) Symbol Type Viewer was an 
invaluable tool when analyzing the data structures used by the Windows 7 heap 
manager. Without it many hours might have been wasted looking for the proper 
structures.  

  

http://www.laboskopia.com/
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Prerequisites 
 
All of the pseudo-code and structures used in this paper were derived from 32-bit Windows 7 
ntdll.dll version 6.1.7600.16385 unless otherwise stated. The structure definitions were 
procured from the library via the Microsoft Symbol Server using the Symbol Type Viewer tool 
and Windbg.  

 
The pseudo-code representation of this code has been heavily edited for brevity to provide 
focus on the most commonly used heap management algorithms. If you feel that I have left 
something out or incorrectly interpreted the code please contact me at cvalasek@gmail.com. I 
will give you a dollar. 
 

Terminology 
  

Many papers have been written regarding the Windows heap, and unfortunately I have seen 
many different terms used throughout the material. Although the terms used in this paper may 
vary from those used by others, I would like to define them now for consistency throughout this 
document.  
 
The term block or blocks will refer to 8-bytes of contiguous memory. This is the unit 
measurement used by heap chunk headers when referencing their size. A chunk is a contiguous 
piece of memory that can be measured in either, blocks or bytes.  
 
HeapBase is a pseudonym for a pointer to a _HEAP structure as defined by the Windows 
Debugging Symbols.  Throughout this paper objects may be defined as being a certain offset 
from the HeapBase. Also, the Low Fragmentation Heap will be shortened to LFH in some places. 
 
A BlocksIndex is another name for the _HEAP_LIST_LOOKUP structure. The two terms can be 
used interchangeably. The BlocksIndex structure that manages Lists holding chunks below 0x400 
(1024) bytes will be referred to as the 1st BlocksIndex, while the structure that manages Lists 
holding chunks ranging from 0x400-0x4000 (16k) will be referred to as the 2nd BlocksIndex. 
Chunks larger than 16k and below the DeCommitThreshold and 0xFE00 blocks will be managed 
in FreeList[0]-like structure [Discussed later in this paper]. 
 
The concept of having Dedicated FreeLists has disappeared. The term ListHint or FreeList will be 
used when referring to a list which points into the Heap->FreeLists at a specific location. This will 
be discussed in further detail in the Architecture section. 
 
Finally the term HeapBin, Bin, or UserBlock will be used when referring to memory allocated 
from the Low Fragmentation heap for a certain size. I know most call this a HeapBucket but I 
will refrain from doing so to reduce confusion since Microsoft’s debugging symbols use the 
name _HEAP_BUCKET for a 0x4 byte data structure that is used to designate a size but not used 
for memory containment. 

  

mailto:cvalasek@gmail.com


7 
 

Notes 
 

This paper is meant to serve as subsequent knowledge to the work that John McDonald and I 
completed for Blackhat USA 2009. Any information regarding the inner workings of doubly 
linked lists, Lookaside lists, etc can be found in the paper entitled Practical Windows XP/2003 
Exploitation (McDonald/Valasek 2009). 
 

Data Structures 
 
These data structures were derived from the Windows Debugging Symbols for ntdll.dll version 
6.1.7600.16385. They are used to keep track of memory within the manager, providing the user 
seamless access to virtual memory through abstracted function calls; mainly HeapAlloc(), 
HeapFree(), malloc() and free().  

 

_HEAP  

(HeapBase) 

 
Each heap that gets created starts with an integral structure called the HeapBase. The HeapBase 
contains many vital values and pointers to structures used by the heap manager. This is the 
heart of every heap and must sustain its integrity to provide reliable allocation and free 
operations. If you are familiar with the HeapBase used in the Windows XP code base, this will 
look quite similar; yet some of the bolded items need further explanation. The following shows 
the contents for a _HEAP structure in 32-bit Windows 7 Service Pack 0: 
 

Listing 1. _HEAP via windbg 

0:001> dt _HEAP 
ntdll!_HEAP 
   +0x000 Entry            : _HEAP_ENTRY 
   +0x008 SegmentSignature : Uint4B 
   +0x00c SegmentFlags     : Uint4B 
   +0x010 SegmentListEntry : _LIST_ENTRY 
   +0x018 Heap             : Ptr32 _HEAP 
   +0x01c BaseAddress      : Ptr32 Void 
   +0x020 NumberOfPages    : Uint4B 
   +0x024 FirstEntry       : Ptr32 _HEAP_ENTRY 
   +0x028 LastValidEntry   : Ptr32 _HEAP_ENTRY 
   +0x02c NumberOfUnCommittedPages : Uint4B 
   +0x030 NumberOfUnCommittedRanges : Uint4B 
   +0x034 SegmentAllocatorBackTraceIndex : Uint2B 
   +0x036 Reserved         : Uint2B 
   +0x038 UCRSegmentList   : _LIST_ENTRY 
   +0x040 Flags            : Uint4B 
   +0x044 ForceFlags       : Uint4B 
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   +0x048 CompatibilityFlags : Uint4B 
   +0x04c EncodeFlagMask   : Uint4B 
   +0x050 Encoding         : _HEAP_ENTRY 
   +0x058 PointerKey       : Uint4B 
   +0x05c Interceptor      : Uint4B 
   +0x060 VirtualMemoryThreshold : Uint4B 
   +0x064 Signature        : Uint4B 
   +0x068 SegmentReserve   : Uint4B 
   +0x06c SegmentCommit    : Uint4B 
   +0x070 DeCommitFreeBlockThreshold : Uint4B 
   +0x074 DeCommitTotalFreeThreshold : Uint4B 
   +0x078 TotalFreeSize    : Uint4B 
   +0x07c MaximumAllocationSize : Uint4B 
   +0x080 ProcessHeapsListIndex : Uint2B 
   +0x082 HeaderValidateLength : Uint2B 
   +0x084 HeaderValidateCopy : Ptr32 Void 
   +0x088 NextAvailableTagIndex : Uint2B 
   +0x08a MaximumTagIndex  : Uint2B 
   +0x08c TagEntries       : Ptr32 _HEAP_TAG_ENTRY 
   +0x090 UCRList          : _LIST_ENTRY 
   +0x098 AlignRound       : Uint4B 
   +0x09c AlignMask        : Uint4B 
   +0x0a0 VirtualAllocdBlocks : _LIST_ENTRY 
   +0x0a8 SegmentList      : _LIST_ENTRY 
   +0x0b0 AllocatorBackTraceIndex : Uint2B 
   +0x0b4 NonDedicatedListLength : Uint4B 
   +0x0b8 BlocksIndex      : Ptr32 Void 
   +0x0bc UCRIndex         : Ptr32 Void 
   +0x0c0 PseudoTagEntries : Ptr32 _HEAP_PSEUDO_TAG_ENTRY 
   +0x0c4 FreeLists        : _LIST_ENTRY 
   +0x0cc LockVariable     : Ptr32 _HEAP_LOCK 
   +0x0d0 CommitRoutine    : Ptr32     long  
   +0x0d4 FrontEndHeap     : Ptr32 Void 
   +0x0d8 FrontHeapLockCount : Uint2B 
   +0x0da FrontEndHeapType : UChar 
   +0x0dc Counters         : _HEAP_COUNTERS 
   +0x130 TuningParameters : _HEAP_TUNING_PARAMETERS 

  

 EncodeFlagMask – A value that is used to determine if a heap chunk header is encoded. 
This value is initially set to 0x100000 by RtlpCreateHeapEncoding() in RtlCreateHeap(). 

 Encoding – Used in an XOR operation to encode the chunk headers, preventing 
predictable meta-data corruption. 

 BlocksIndex – This is a _HEAP_LIST_LOOKUP structure that is used for a variety of 
purposes. Due to its importance, it will be discussed in greater detail later in this 
document. 



9 
 

 FreeLists – A special linked-list that contains pointers to ALL of the free chunks for this 
heap. It can almost be thought of as a heap cache, but for chunks of every size (and no 
single associated bitmap).  

 FrontEndHeapType – An integer is initially set to 0x0, and is subsequently assigned a 
value of 0x2, indicating the use of a LFH. Note: Windows 7 does not actually have 
support for using Lookaside Lists.  

 FrontEndHeap – A pointer to the associated front-end heap. This will either be NULL or 
a pointer to a _LFH_HEAP structure when running under Windows 7. 

 

_HEAP_LIST_LOOKUP  

(HeapBase->BlocksIndex) 

 
Understanding the _HEAP_LIST_LOOKUP structure is one of the most important tasks in 
building a solid foundation of Windows 7 heap management. It is the keystone of allocations 
and frees used by the back-end manager and the front-end manager. Under normal conditions 
the 1st _HEAP_LIST_LOOKUP structure, which is initialized in RtlCreateHeap(), will be located at 
an offset of +0x150 from the HeapBase. 

 
Listing 2. _HEAP_LIST_LOOKUP via windbg 

0:001> dt _HEAP_LIST_LOOKUP 
ntdll!_HEAP_LIST_LOOKUP 
   +0x000 ExtendedLookup   : Ptr32 _HEAP_LIST_LOOKUP 
   +0x004 ArraySize        : Uint4B 
   +0x008 ExtraItem        : Uint4B 
   +0x00c ItemCount        : Uint4B 
   +0x010 OutOfRangeItems  : Uint4B 
   +0x014 BaseIndex        : Uint4B 
   +0x018 ListHead         : Ptr32 _LIST_ENTRY 
   +0x01c ListsInUseUlong  : Ptr32 Uint4B 
   +0x020 ListHints        : Ptr32 Ptr32 _LIST_ENTRY 

 

 ExtendedLookup - A pointer to the next _HEAP_LIST_LOOKUP structure. The value is 
NULL if there is no ExtendedLookup. 

 ArraySize – The highest block size that this structure will track, otherwise storing it in a 
special ListHint. The only two sizes that Windows 7 currently uses are 0x80 and 0x800.  

 OutOfRangeItems – This 4-byte value counts the number of items in the FreeList[0]-like 
structure. Each _HEAP_LIST_LOOKUP tracks free chunks larger than ArraySize-1 in 
ListHint[ArraySize-BaseIndex-1]. 

 BaseIndex – Used to find the relative offset into the ListHints array, since each 
_HEAP_LIST_LOOKUP is designated for a certain size. For example, the BaseIndex for 1st 
BlocksIndex would be 0x0 because it manages lists for chunks from 0x0 – 0x80, while 
the 2nd BlocksIndex would have a BaseIndex of 0x80. 

 ListHead – This points to the same location as HeapBase->FreeLists, which is a linked list 
of all the free chunks available to a heap. 
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 ListsInUseUlong – Formally known as the FreeListInUseBitmap, this 4-byte integer is an 
optimization used to determine which ListHints have available chunks. 

 ListHints – Also known as FreeLists, these linked lists provide pointers to free chunks of 
memory, while also serving another purpose. If the LFH is enabled for a given Bucket 
size, then the blink of a specifically sized ListHint/FreeList will contain the address of a 
_HEAP_BUCKET + 1.  

  

_LFH_HEAP  

(HeapBase->FrontEndHeap) 

 
The Low Fragmentation heap is managed by this data structure.  When activated, it will let the 
heap manager know what sizes it is capable of managing, along with keeping caches of 
previously used chunks. Although the BlocksIndex is capable of tracking chunks that are over 
0x800 blocks in length, the LFH will only be used for chunks that are less than 16k. 
 

Listing 3. _LFH_HEAP via windbg 

0:001> dt _LFH_HEAP 
ntdll!_LFH_HEAP 
   +0x000 Lock             : _RTL_CRITICAL_SECTION 
   +0x018 SubSegmentZones  : _LIST_ENTRY 
   +0x020 ZoneBlockSize    : Uint4B 
   +0x024 Heap             : Ptr32 Void 
   +0x028 SegmentChange    : Uint4B 
   +0x02c SegmentCreate    : Uint4B 
   +0x030 SegmentInsertInFree : Uint4B 
   +0x034 SegmentDelete    : Uint4B 
   +0x038 CacheAllocs      : Uint4B 
   +0x03c CacheFrees       : Uint4B 
   +0x040 SizeInCache      : Uint4B 
   +0x048 RunInfo          : _HEAP_BUCKET_RUN_INFO 
   +0x050 UserBlockCache   : [12] _USER_MEMORY_CACHE_ENTRY 
   +0x110 Buckets          : [128] _HEAP_BUCKET 
   +0x310 LocalData        : [1] _HEAP_LOCAL_DATA 

 

 Heap – A pointer to the parent heap of this LFH. 

 UserBlockCache – Although this won’t be thoroughly discussed, it’s worth mentioning 
that the UserBlockCache array keeps track of previously used memory chunks for future 
allocations. 

 Buckets – An array of 0x4 byte data structures that are used for the sole purpose of 
keeping track of indices and sizes. This is why the term Bin will be used to describe the 
area of memory used to fulfill request for a certain Bucket.  

 LocalData – This is a pointer to a large data structure which holds information about 
each SubSegment. See _HEAP_LOCAL_DATA for more information. 
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_LFH_BLOCK_ZONE  

(HeapBase->FrontEndHeap->LocalData->CrtZone) 

 
This data structure is used to keep track of locations in memory that are used to service 
allocation requests. These pointers are setup on the first request serviced by the LFH or after 
the pointer list have been exhausted.  

 
Listing 4. _LFH_BLOCK_ZONE via windbg 

0:000> dt _LFH_BLOCK_ZONE 
ntdll!_LFH_BLOCK_ZONE 
   +0x000 ListEntry        : _LIST_ENTRY 
   +0x008 FreePointer      : Ptr32 Void 
   +0x00c Limit            : Ptr32 Void 

  

 ListEntry – A linked list of _LFH_BLOCK_ZONE structures. 

 FreePointer – This will hold a pointer to memory that can be used by a 
_HEAP_SUBSEGMENT. 

 Limit – The last _LFH_BLOCK_ZONE structure in the list. When this value is reached or 
exceeded, the back-end heap will be used to create more _LFH_BLOCK_ZONE 
structures. 

 

_HEAP_LOCAL_DATA  

(HeapBase->FrontEndHeap->LocalData) 

 
A key structure that provides _HEAP_LOCAL_SEGMENT_INFO instances to the Low 
Fragmentation heap. 
 

Listing 5. _HEAP_LOCAL_DATA via windbg 

0:000> dt _HEAP_LOCAL_DATA 
ntdll!_HEAP_LOCAL_DATA 
   +0x000 DeletedSubSegments : _SLIST_HEADER 
   +0x008 CrtZone          : Ptr32 _LFH_BLOCK_ZONE 
   +0x00c LowFragHeap      : Ptr32 _LFH_HEAP 
   +0x010 Sequence         : Uint4B 
   +0x018 SegmentInfo      : [128] _HEAP_LOCAL_SEGMENT_INFO 

 

 LowFragHeap – The Low Fragmentation heap associated with this structure. 

 SegmentInfo – An array of _HEAP_LOCAL_SEGMENT_INFO structures representing all 
available sizes for this LFH. See _HEAP_LOCAL_SEGMENT_INFO for more information. 
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_HEAP_LOCAL_SEGMENT_INFO  

(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]) 

 
The size of the request to be serviced will determine which _HEAP_LOCAL_SEGMENT_INFO 
structure is used. This structure holds information that the heap algorithms use when 
determining the most efficient way to allocate and free memory. Although there are only 128 of 
these structures in _HEAP_LOCAL_DATA, all 8-byte aligned sizes below 16k have a 
corresponding _HEAP_LOCAL_SEGMENT_INFO. A special algorithm calculates a relative index so 
that each Bucket is guaranteed a dedicated structure.  
 

Listing 6. _HEAP_LOCAL_SEGMENT_INFO via windbg 

0:000> dt _HEAP_LOCAL_SEGMENT_INFO 
ntdll!_HEAP_LOCAL_SEGMENT_INFO 
   +0x000 Hint             : Ptr32 _HEAP_SUBSEGMENT 
   +0x004 ActiveSubsegment : Ptr32 _HEAP_SUBSEGMENT 
   +0x008 CachedItems      : [16] Ptr32 _HEAP_SUBSEGMENT 
   +0x048 SListHeader      : _SLIST_HEADER 
   +0x050 Counters         : _HEAP_BUCKET_COUNTERS 
   +0x058 LocalData        : Ptr32 _HEAP_LOCAL_DATA 
   +0x05c LastOpSequence   : Uint4B 
   +0x060 BucketIndex      : Uint2B 
   +0x062 LastUsed         : Uint2B 

 
 

 Hint – This SubSegment is only set when the LFH frees a chunk which it is managing. If a 
chunk is never freed, this value will always be NULL. 

 ActiveSubsegment – The SubSegment used for most memory requests. While initially 
NULL, it is set on the first allocation for a specific size. 

 LocalData – The _HEAP_LOCAL_DATA structure associated with this structure. 

 BucketIndex – Each SegmentInfo object is related to a certain Bucket size (or Index).  
 

_HEAP_SUBSEGMENT  

(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]-

>Hint,ActiveSubsegment,CachedItems) 

 
After the appropriate structures are indentified for a specific _HEAP_BUCKET, the front-end 
manager will perform a free or allocation. Since the LFH can be thought of as a heap manager 
inside a heap manager, it makes sense that the _HEAP_SUBSEGMENT is used to keep track of 
how much memory is available and how it should be distributed.   
 

Listing 7. _HEAP_SUBSEGMENT via windbg 

0:000> dt _HEAP_SUBSEGMENT 
ntdll!_HEAP_SUBSEGMENT 
   +0x000 LocalInfo        : Ptr32 _HEAP_LOCAL_SEGMENT_INFO 



13 
 

   +0x004 UserBlocks       : Ptr32 _HEAP_USERDATA_HEADER 
   +0x008 AggregateExchg   : _INTERLOCK_SEQ 
   +0x010 BlockSize        : Uint2B 
   +0x012 Flags            : Uint2B 
   +0x014 BlockCount       : Uint2B 
   +0x016 SizeIndex        : UChar 
   +0x017 AffinityIndex    : UChar 
   +0x010 Alignment        : [2] Uint4B 
   +0x018 SFreeListEntry   : _SINGLE_LIST_ENTRY 
   +0x01c Lock             : Uint4B 

 
 

 LocalInfo – The _HEAP_LOCAL_SEGMENT_INFO structure associated with this structure. 

 UserBlocks – A _HEAP_USERDATA_HEADER structure coupled with this SubSegment 
which holds a large chunk of memory split into n-number of chunks. 

 AggregateExchg – An _INTERLOCK_SEQ structure used to keep track of the current 
Offset and Depth. 

 SizeIndex – The _HEAP_BUCKET SizeIndex for this SubSegment. 
 

_HEAP_USERDATA_HEADER  

(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]-

>Hint,ActiveSubsegment,CachedItems->UserBlocks) 

 
This header precedes the UserBlock chunk that is used to service all requests for the Low 
Fragmentation heap. After all the logic is performed to locate a SubSegment, this structure is 
where committed memory is actually manipulated. 
 

Listing 8. _HEAP_USERDATA_HEADER via windbg 

0:000> dt _HEAP_USERDATA_HEADER 
ntdll!_HEAP_USERDATA_HEADER 
   +0x000 SFreeListEntry   : _SINGLE_LIST_ENTRY 
   +0x000 SubSegment       : Ptr32 _HEAP_SUBSEGMENT 
   +0x004 Reserved         : Ptr32 Void 
   +0x008 SizeIndex        : Uint4B 
   +0x00c Signature        : Uint4 
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_INTERLOCK_SEQ 

(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]-

>Hint,ActiveSubsegment,CachedItems->AggregateExchg) 

  
Due to the way the UserBlock chunks are divided, there needs to be a way to get the current 
offset into it; for freeing or allocating the next chunk. This process is handled by the 
_INTERLOCK_SEQ data structure.  
 

 
Listing 9. _INTERLOCK_SEQ via windbg 

0:000> dt _INTERLOCK_SEQ 
ntdll!_INTERLOCK_SEQ 
   +0x000 Depth            : Uint2B 
   +0x002 FreeEntryOffset  : Uint2B 
   +0x000 OffsetAndDepth   : Uint4B 
   +0x004 Sequence         : Uint4B 
   +0x000 Exchg            : Int8B 

 

 Depth – A counter that keeps track of how many chunks are left in a UserBlock. This 
number is incremented on a free and decremented on an allocation. Its value is 
initialized to the size of UserBlock divided by the HeapBucket size. 

 FreeEntryOffset – This 2-byte integer holds a value, when added to the address of the 
_HEAP_USERDATA_HEADER, results in a pointer to the next location for freeing or 
allocating memory. This value is represented in blocks (0x8 byte chunks) and is 
initialized to 0x2, as sizeof(_HEAP_USERDATA_HEADER) equals 0x10. [0x2 * 0x8 == 
0x10]. 

 OffsetAndDepth – Since both Depth and FreeEntryOffset are 2-bytes, they can be 
combined into this single 4-byte value.  
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_HEAP_ENTRY  

(Chunk Header) 

 
The _HEAP_ENTRY, also known as the heap chunk header, is an 8-byte value stored before 
every chunk of memory in the heap (even the chunks inside the UserBlocks). It has changed 
quite drastically since the Windows XP code base due to the modifications in header validation 
and security introduced in newer versions of Windows.  
 

Listing 10. _HEAP_ENTRY via Windbg 

0:001> dt _HEAP_ENTRY 
ntdll!_HEAP_ENTRY 
   +0x000 Size             : Uint2B 
   +0x002 Flags            : UChar 
   +0x003 SmallTagIndex    : Uchar 
   +0x000 SubSegmentCode   : Ptr32 Void 
   +0x004 PreviousSize     : Uint2B 
   +0x006 SegmentOffset    : Uchar 
   +0x006 LFHFlags         : Uchar 
   +0x007 UnusedBytes      : Uchar 
   +0x000 FunctionIndex    : Uint2B 
   +0x002 ContextValue     : Uint2B 
   +0x000 InterceptorValue : Uint4B 
   +0x004 UnusedBytesLength : Uint2B 
   +0x006 EntryOffset      : Uchar 
   +0x007 ExtendedBlockSignature : Uchar 

 

 Size – The size, in blocks, of the chunk. This includes the _HEAP_ENTRY itself. 

 Flags – Flags denoting the state of this heap chunk. Some examples are FREE or BUSY. 

 SmallTagIndex – This value will hold the XOR’ed checksum of the first three bytes of the 
_HEAP_ENTRY. 

 UnusedBytes/ExtendedBlockSignature – A value used to hold the unused bytes or a 
byte indicating the state of the chunk being managed by the LFH. 
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Overview 
 

_HEAP
+0xB8 – BlocksIndex

+0xD4 - FrontEndHeap 

_LFH_HEAP (LowFragHeap)
+0x24 – Heap

+0x110 - Buckets[128]

+0x310 LocalData[1]

_HEAP_LOCAL_DATA (LocalData)
+0x0C – LowFragHeap

+0x18 - SegmentInfo[128]

_HEAP_LIST_LOOKUP (BlocksIndex)
+0x00 – ExtendedLookup

+0x04 – ArraySize

+0x14 – BaseIndex

+0x18 – ListHead

+0x1C – ListsInUseULong

+0x20 - ListHints

_HEAP_LOCAL_SEGMENT_INFO (SegmentInfo)
+0x00 – Hint

+0x04 – ActiveSubsegment

+0x08 - CachedItems[16]

+0x58 – LocalData

+0x60 - BucketIndex

_HEAP_SUBSEGMENT (Hint/ActiveSubsegment/CachedItems)
+0x00 – LocalInfo

0x04 – UserBlocks

+0x08 - AggregateExchg

_HEAP_USERDATA_HEADER (UserBlocks)
+0x00 – SubSegment

+0x10 User-Writable-Data

_INTERLOCK_SEQ (AggregateExchg)
+0x00 – Depth

+0x02 - FreeEntryOffset

 
Diagram 1. Data structure overview 
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Architecture 
 

The Windows 7 heap manager has changed quite drastically since the Windows XP days, so it is 
necessary to go over some brief architectural adjustments. Specifically, the way FreeLists work 
has been redesigned along with how data is stored in them needs explanation.  

  

FreeLists 
 
Before we can talk about the core algorithms, the current and previous FreeList structure must 
be examined. This is because the way the FreeLists operate and store data has changed since 
the Windows XP code base. This is an overview of the FreeList structure as defined by John 
McDonald and myself in a previous paper: 

 
There are separate lists for each possible block size below 1024 bytes, giving a total of 
128 free lists (heap blocks are sized in multiples of 8.) Each doubly-linked free list has a 
sentinel head node located in the array at the base of the heap. Each head node 
contains two pointers: a forward link (FLink), and a back link (BLink). FreeList[1] is 
unused, and FreeList[2] through FreeList[127] are called the dedicated free lists. For 
these dedicated lists, all of the free blocks in the list are the same size, which 
corresponds to the array index * 8. All blocks higher than or equal to size 1024, 
however, are kept in a single free list at FreeList[0]. (This slot was available for use 
because there aren’t any free blocks of size 0.) The free blocks in this list are sorted from 
the smallest block to the largest block. So, FreeList[0].Flink points to the smallest free 
block (of size>=1024), and FreeList[0].Blink points to the largest free block (of 
size>=1024.) 

 
 

NonDedicatedListLength

LargeBlocksIndex

PseudoTagEntries

FreeList[0].Blink

FreeList[0].FLink

FreeList[1].FLink

FreeList[1].BLink

FreeList[2].FLink

FreeList[2].BLink

0x16c

0x170

0x174

Heap Base

0x178

0x17c

0x180

0x184

0x188

0x18c

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

 
Diagram 2. Windows XP FreeList relationships 
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Since the LFH changed the way the front-end manager worked, the back-end manager had to 
adapt as well. There is not a single Dedicated FreeList now, instead each BlocksIndex maintains 
its own ListHints, which are initialized to NULL.  
 
The BlocksIndex structure holds a pointer to what is referred to as the ListHints, which point 
into the FreeLists structure. It is setup quite similar to the old FreeLists only the 0th position of 
the linked list is no longer used for chunks larger than 0x400 (1024) bytes; instead conditionals 
are required.  If there is no BlocksIndex->ExtendedLookup then all chunks of size greater than 
or equal to BlocksIndex->ArraySize - 1 will be stored in ascending order in FreeList[ArraySize-
BaseIndex – 1].  

 
Although the FreeLists contain sentinel nodes at a calculated offset from the ListHints pointer 
that is where the most of the similarities end. While the Flink pointer still points to the next 
available chunk in a FreeList, it can span into larger Freelists as well. This lets the Heap.FreeLists 
traverse every free chunk available for a particular heap.  
 
The Blink in the sentinel node has changed as well; serving a dual purpose. If the LFH is not 
enabled for a Bucket, then the sentinel Blink will hold a counter used in an allocation heuristic. 
Otherwise, it will contain the address of a _HEAP_BUCKET + 1 (Except for the Case of 
ListHint[ArraySize-BaseIndex-1]).  
 
The following diagram is an example of a sparsely populated heap to show how these new 
constructs interact with each other. It contains a single BlocksIndex that is designed to track 
chunks below 1024 bytes in size. There are only five chunks associated with this heap and they 
can be accessed in a variety of ways.  
 
For example, if a request came in for an allocation of 0x30 (48) bytes the heap would attempt to 
use the ListHint[0x6]. You can see that that although there are only three chunks available for 
size 0x30, the Flink in the last free chunk for size 0x30 points to an entry that belongs to 
FreeList[0x7]. FreeList[0x7] has one entry, but like FreeList[0x6], its last chunk points across the 
size boundary into a larger chunk.  
 
This changes the way that list termination is done. Instead of the last node in the list pointing to 
its sentinel node on a Dedicated FreeList, it points to the FreeLists entry at +0xC4 from the 
HeapBase.  
 

Note: When the _HEAP_LIST_LOOKUP structures are initialized, either in 
RtlCreateHeap() or RtlpExtendListLookup, the ListHead is set to point at Heap.FreLists 
[0xC4 from HeapBase]. This makes both entries identical and pointing to the same 
region in memory. 
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+0xC4 – FreeLists

_HEAP @ 0x150000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BlocksIndex @ [0x150150]

   +0x000 ExtendedLookup   : (null) 

   +0x004 ArraySize        : 0x80

   +0x00c ItemCount        : 5

   +0x010 OutOfRangeItems  : 1

   +0x014 BaseIndex        : 0

   +0x018 ListHead         : 0x1500c4 

   +0x01c ListsInUseUlong  : 0x150174  -> 0xc0

   +0x020 ListHints        : 0x150184

ListHints/FreeLists @ 0x150184

Addr : 0x1508F0

Size : 0x6 Blocks

Flink : 0x150890

Blink : 0x1500C4

FreeList[0x6] {0x30 Bytes}

Addr: 0x1501B4

Flink : 0x1508F0

Blink : 0x8000a (counter)

.

.

.

.

.

.

Addr : 0x150890

Size : 0x6 Blocks

Flink : 0x150800

Blink : 0x1508F0

Addr : 0x150800

Size : 0x6 Blocks

Flink : 0x150988

Blink : 0x150890

Addr : 0x150988

Size : 0x7 Blocks

Flink : 0x1509F8

Blink : 0x150800

Addr : 0x1509F8

Size : 0xBE Blocks

Flink : 0x1500C4

Blink : 0x150988

FreeList[0x7] {0x38 Bytes}

Addr: 0x1501BC

Flink : 0x150988

Blink : 0x30004 (counter)

+0xB8 - BlocksIndex

FreeList[0x7F] {> 0x3F8 Bytes}

Addr: 0x15057C

Flink : 0x1509F8

Blink : 0x000000

FreeList[0x8] {0x40 Bytes}

Addr: 0x1501C4

Flink : 0x000000

Blink : 0x154a5d (_HEAP_BUCKET)

 

Diagram 3. New FreeList relationship 
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Algorithms 
 
A basic foundation of knowledge must be laid to fully understand heap determinism and 
exploitation. Without this core information one can only pray-after-free. This section will break 
down the core algorithms into two parts, allocation and freeing; divided into back-end and 
front-end. This is done because memory manipulation performed by the front or back end can 
affect the state of the other.   

Allocation 
 
Allocations start at RtlAllocateHeap() when attempting to service requests from a calling 
application. The function starts by 8-byte aligning the desired allocation amount. It will then 
acquire an index into the ListHints. If no specific index is located, BlocksIndex->ArraySize-1 will 
be used. 

 
Listing 11. RtlAllocateHeap BlocksIndex Search 

if(Size == 0x0)  

 Size = 0x1; 

 

//ensure that this number is 8-byte aligned 

int RoundSize = Round(Size); 

 

int BlockSize = Size / 8; 

 

//get the HeapListLookup, which determines if we should use the LFH 

_HEAP_LIST_LOOKUP *BlocksIndex = (_HEAP_LIST_LOOKUP*)heap->BlocksIndex; 

 

//loop through the HeapListLookup structures to determine which one to use 

while(BlocksSize >= BlocksIndex->ArraySize) 

{ 

 if(BlocksIndex->ExtendedLookup == NULL) 

 { 

  BlocksSize = BlocksIndex->ArraySize - 1; 

  break; 

 } 

 

 BlocksIndex = BlocksIndex->ExtendedLookup; 

} 

 

There exists a condition where the search will return a ListHint index of 
BlocksIndex->ArraySize-1. If this condition occurs then the back-end allocator will be used with 
a FreeList value of NULL. This will cause the back-end allocator to attempt to use the  
Heap->FreeLists. If the FreeLists do not contain a sufficiently sized chunk, the heap will be 
extended via RtlpExtendHeap(). 
 
If a specific index has been successfully acquired, then the heap manager will attempt to use the 
FreeList for the requested size. It will then proceed to look at the FreeList->Blink to determine if 
the Low Fragmentation heap is active for that Bucket; otherwise, the manager will default to 
using the back-end: 
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Listing 12. RtlAllocateHeap heap manager selector 

//get the appropriate freelist to use based on size 

int FreeListIndex = BlockSize - HeapListLookup->BaseIndex; 

 

_LIST_ENTRY *FreeList = &HeapListLookup->ListHints[FreeListIndex]; 

if(FreeList)  

{ 

 //check FreeList[index]->Blink to see if the heap bucket  

//context has been populated via RtlpGetLFHContext() 

 //RtlpGetLFHContext() stores the HeapBucket  

//context + 1 in the Blink 

 _HEAP_BUCKET *HeapBucket = FreeList->Blink; 

 

 if(HeapBucket & 1)  

 { 

  RetChunk = RtlpLowFragHeapAllocFromContext(HeapBucket-1, aBytes); 

   

  if(RetChunk && heap->Flags == HEAP_ZERO_MEMORY) 

   memset(RetChunk, 0, RoundSize); 

 } 

} 

 

//if the front-end allocator did not succeed, use the back-end 

if(!RetChunk) 

{ 

 RetChunk = RtlpAllocateHeap(heap, Flags | 2, Size, RoundSize, FreeList); 

} 

 

Back-end Allocation 
 

The back-end allocator is the last line in allocations; if it fails, the request for memory will not 
occur, returning NULL. Along with the responsibilities of servicing memory requests unable to be 
serviced by the front-end, the back-end also activates the front-end allocator based on 
activation heuristics. It can be thought of as being very similar to the way the heap cache 
heuristic worked in the Window XP code base.  
 

RtlpAllocateHeap 

 
A _HEAP structure, the size to allocate, and the desired ListHint (FreeList) are a few of the 
arguments passed to RtlpAllocateHeap(). Like RtlAllocateHeap, the first order of business is to 
round the requested size to the nearest 8-byte aligned value and determining if the Flags have 
the HEAP_NO_SERIALIZE bit set. If this bit is set, the LFH will not be enabled. 
(http://msdn.microsoft.com/en-us/library/aa366599%28v=VS.85%29.aspx) 
 

Listing 13. RtlpAllocateHeap size rounding and Heap maintenance 
int RoundSize; 

 

//if the FreeList isn't NULL, the rounding has already  

//been preformed 

if(FreeList) 

{ 

 RoundSize = RoundSize; 

} 

http://msdn.microsoft.com/en-us/library/aa366599%28v=VS.85%29.aspx
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else 

{ 

 int MinSize = 1; 

 if(Size) 

  MinSize = Size; 

 

 //rounds to the nearest 8-byte aligned number 

 RoundSize = Round(MinSize); 

} 

 

int SizeInBlocks = RoundSize / 8; 

 

if(SizeInBlocks < 2) 

{ 

 //RoundSize += sizeof(_HEAP_ENTRY) 

 RoundSize = RoundSize + 8; 

 SizeInBlocks = 2; 

} 

 

//if NOT HEAP_NO_SERIALIZE, use locking mechanisms  

//LFH CANNOT be enabled if this path isn't taken 

if(!(Flags & HEAP_NO_SERIALIZE))  

{ 

 //setup locking mechanisms here 

 

 //if we have certain compaitibilityflags  

 //(either set below, or otherwise, then  

 //we will call 'RtlpPerformHeapMaintenance'  

 //which will activate the LFH and  

 //setup an ExtendedListLookup as well 

 if(Heap->CompatibilityFlags & 0x60000000) 

  RtlpPerformHeapMaintenance(Heap); 

} 

 
Note: You will see later how the CompatibilityFlags are set in subsequent code. This is 
how the Low Fragmentation heap is activated. Although the LFH is the front-end 
manager by default it doesn’t actually handle any of the memory management until a 
certain heuristic is triggered. 

 
Even though the LFH may be ready to service requests at this point, the back-end allocator will 
continue for this allocation. By leaving out the code for handling Virtual Memory requests, it can 
be seen that RtlpAllocateHeap() will attempt to see if the FreeList argument is non-NULL. 
Pending a valid FreeList argument, the back-end manager will apply the heuristic used to 
determine if the LFH should be used for any later allocations: 

 
Listing 14. RtlpAllocateHeap LFH Heuristic 

if(FreeList != NULL) 

{ 

 //if this freelist doesn't hold a _HEAP_BUCKET 

 //update the counters and attempt to get the LFH context 

 if(!(FreeList->Blink & 1)) 

 { 

  //add a certain amount to the blink 

  FreeList->Blink += 0x10002; 

 

  //if the counter has ran more than 0x10 times OR  

  //we haven't successfully entered the critical section OR  

  //we've been through 0x1000 iterations 
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  //then attempt to set the Compatibility flags  

  //(which, in turn, will call RtlpPerformHeapMaintenance()) 

  if(WORD)FreeList->Blink > 0x20 || FreeList->Blink > 0x10000000) 

  { 

   //if the FrontEndHeapType is LFH (0x2) assign it 

   int FrontEndHeap; 

   if(Heap->FrontEndHeapType == 0x2) 

    FrontEndHeap = Heap->FrontEndHeap; 

   else 

    FrontEndHeap = NULL; 

 

   //this function gets a _HEAP_BUCKET  

   //stored in _LFH_HEAP->Bucket[BucketSize] 

   //if the LFH hasn't been activated yet, it will return NULL 

   char *LFHContext = RtlpGetLFHContext(FrontEndHeap, Size); 

    

   //if the context isn't set AND 

   //we've seen 0x10+ allocations, set the flags 

   if(LFHContext == NULL) 

   { 

    if((WORD)FreeList->Blink > 0x20) 

    { 

     //RtlpPerformHeapMaintenance heurstic 

     if(Heap->FrontEndHeapType == NULL) 

      Heap->CompatibilityFlags |= 0x20000000; 

    } 

   } 

   else  

   { 

    //save the _HEAP_BUCKET in the Blink  

    //+1 == _HEAP_BUCKET 

    FreeList->Blink = LFHContext + 1; 

   } 

  } 

 } 

} 

 
Note: This is why I stated that the front and back end managers were so closely related. 
As you can see the ListHint is used to store the address of a _HEAP_BUCKET, which in 
turn is used to determine if the manager should use the LFH. This dual use may seem 
confusing now, but it will become clearer after the front-end allocation and free 
algorithms are discussed. 

 
Now that the LFH activation flags have been set, the allocation can continue its course on the 
back-end. The FreeList is checked to see if it is populated, then a safe unlink check is performed. 
This ensures FreeList values maintain their integrity to prevent 4-byte overwrites when 
unlinking. The ListsInUseUlong (FreeListInUseBitmap) is then updated accordingly. Finally, the 
chunk that has been unlinked from the list has its header updated to show that it is BUSY and 
returned. 
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Listing 15. RtlpAllocateHeap ListHint allocation 
//attempt to use the Flink 

if(FreeList != NULL && FreeList->Flink != NULL) 

{ 

 int SizeToUse; 

 

 //saved values 

 _HEAP_ENTRY *Blink = FreeList->Blink; 

 _HEAP_ENTRY *Flink = FreeList->Flink; 

 

 //get the heap chunk header by subtracting 8 

 _HEAP_ENTRY *ChunkToUseHeader = Flink - 8; 

 

 //decode the header if applicable 

 if(Heap->EncodeFlagMask) 

  DecodeAndValidateChecksum(ChunkToUseHeader); 

 

 //ensure safe unlinking before acquiring this chunk for use 

 if(Blink->Flink != Flink->Blink ||  

  Blink->Flink != FreeList)  

 { 

  RtlpLogHeapFailure(); 

  //XXX RtlNtStatusToDosError and return 

 } 

  

 //decrement the total heap size  

 Heap->TotalFreeSize -= ChunkToUseHeader->Size; 

 

 //iterate through the BlocksIndex structures  

 //If no sufficient BlocksIndex is found, use BlocksIndex->ArraySize - 1 

 _HEAP_LIST_LOOKUP *BlocksIndex = Heap->BlocksIndex; 

 if(BlocksIndex) 

 { 

  int ListHintIndex = GetListHintIndex(BlocksIndex, Size); 

  int RelativeOffset = ListHintIndex - BlocksIndex->BaseIndex; 

 

  //if there are more of the same size 

  //don't update the bitmap 

  if(Flink->Flink != BlocksIndex->ListHead &&  

   Flink.Size == Flink->Flink.Size) 

  { 

   BlocksIndex->ListHints[FreeListOffset] =  

    Flink->Flink; 

  } 

  else 

  { 

   BlocksIndex->ListHints[FreeListOffset] = NULL; 

   BlocksIndex->ListsInUseUlong[RelativeOffset >> 5] &=  

    ~(1 << RelativeOffset & 0x1F); 

  } 

 } 

  

 //unlink the current chunk to be allocated 

 Blink->Flink = Flink; 

 Flink->Blink = Blink; 

} 
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Note: Although it will be talked about later, it should be noted that the updating of the 
bitmap no longer uses the XOR operation, but instead, the bitwise AND. This prevents 
the 1-byte FreeListInUseBitmap flipping attack from working (McDonald/Valasek 2009). 

 
If the ListHint is not able to provide the application with the memory requested then back-end 
heap manager proceeds to use the Heap->FreeLists. The FreeLists contain all the free chunks for 
a heap. If a chunk of sufficient size is found it will be split if necessary and returned to the user. 
Otherwise, the heap will have to be extended via RtlpExtendHeap(): 

 
Listing 16. RtlpAllocateHeap Heap->FreeLists allocation 

//attempt to use the FreeLists 

_LIST_ENTRY *HeapFreeLists = &Heap->FreeLists; 

_HEAP_LIST_LOOKUP *BlocksIndex = Heap->BlocksIndex; 

_LIST_ENTRY *ChunkToUse; 

 

//find an appropriate chunk on the FreeLists 

_HEAP_LIST_LOOKUP *CurrBlocksIndex = BlocksIndex; 

 

while(1) 

{ 

 //if we've ran out of structures 

 //abort and we'll extend the heap 

 if(CurrBlocksIndex == NULL) 

 { 

  ChunkToUse = CurrBlocksIndex->ListHead; 

  break; 

 } 

 

 //remember that ListHead and HeapFreeLists 

 //point to the same location 

 CurrListHead = CurrBlocksIndex->ListHead; 

  

 //if we've came upon an empty FreeList extend the heap 

 if(CurrListHead == CurrListHead->Blink) 

 { 

  ChunkToUse = CurrListHead; 

  break; 

 } 

 

 _HEAP_ENTRY *BlinkHeader = (CurrListHead->Blink - 8); 

  

 //if the chunk is encoded decode it 

 if(Heap->EncodeFlagMask && 

  Heap->EncodeFlagMask & BlinkHeader) 

 { 

  DecodeHeader(BlinkHeader); 

 }  

 

 //if the chunk can't be serviced by the  

 //largest chunk extend the heap 

 if(SizeInBlocks > BlinkHeader->Size) 

 { 

  ChunkToUse = CurrListHead; 

  break; 

 } 

 

 _HEAP_ENTRY *FlinkHeader = CurrListHead->Flink-8; 

 //if the chunk is encoded decode it 
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if(Heap->EncodeFlagMask && 

  Heap->EncodeFlagMask & FlinkHeader) 

 { 

  DecodeHeader(FlinkHeader); 

 } 

 

 //if the first chunk is sufficient use it 

 //otherwise loop through the rest 

 if(FlinkHeader->Size >= SizeInBlocks) 

 { 

  ChunkToUse = CurrListHead->Flink; 

  break; 

 } 

 else 

 { 

  //loop through all the BlocksIndex->ListHints  

  //looking for a sufficiently sized chunk 

  //then update the bitmap accordingly 

 } 

 

 //look at the next blocks index 

 CurrBlocksIndex = CurrBlocksIndex->ExtendedLookup; 

} 
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Overview 

RtlpAllocateHeap

Heap = _HEAP

FreeList = ListHints[Bucket->SizeIndex]

Size = Allocation Size

Does the Heap need 

maintenance?

Enable the LFH and extend the 

ListLookup

Does FreeList equal NULL?

Does FreeList->Blink contain a 

HeapBucket?

Increment Counter

Is Counter greater than 0x20?

Get LFHContext for Size

Is LFHConext for Size NULL?

Store HeapBucket + 1 in 

FreeList->Blink

Update flags to denote Heap 

maintenance required

Does FreeList->Flink equal 

NULL?

Use ListHint

Iterate through Heap->FreeLists

Found sufficiently sized chunk?

Extend Heap

Return chunk

Unlink Chunk

Update ListsInUseUlong

Found sufficiently sized chunk?

Unlink Chunk

Update ListsInUseUlong

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

 
Diagram 4. Back-end allocation 

 



28 
 

 

Front-end Allocation 
 

Now that we’ve seen how the Low Fragmentation heap is enabled via a heuristic in the back-
end, we can go over the allocation algorithm used for the front-end manager. The LFH was 
designed with performance and reliability in mind (Marinescu 2006). These newly desired 
benefits come at a large cost to reverse engineers; mainly the ability to understand how the 
front-end allocator works. In this section I will try to illustrate how a typical allocation occurs 
when using the Low Fragmentation heap.  

 

RtlpLowFragHeapAllocFromContext 

 
As shown previously, RtlpLowFragHeapAllocFromContext() is only called if the blink for a 
ListHint has bit zero is set to 0x1. The bitwise operation determines if the blink contains a 
HeapBucket, indicating readiness to service the request from the LFH.  
 
Allocations begin with the manager acquiring all the essential data structures for use. This 
includes the _HEAP_LOCAL_DATA, _HEAP_LOCAL_SEGMENT_INFO and _HEAP_SUBSEGMENT 
[The relationship between these structures can be viewed in Diagram 1].  
 
The allocator will first attempt to use the Hint SubSegment. Pending a failure, it will then 
attempt to use the ActiveSubsegment. If the ActiveSubsegment fails, the allocator must setup 
the proper data structures for the LFH to continue. [To avoid redundancy, the code below only 
shows the pseudo-code used for the Hint SubSegment, but the logic can be applied to the 
ActiveSubsegment as well] 
 
The _INTERLOCK_SEQ structure is queried to get the current Depth, Offset and Sequence. This 
information is used to get a pointer to the current free chunk as well as to calculate the Offset 
for the next available chunk. The looping logic is to guarantee that the updating of important 
data is done in an atomic fashion, without any changes between operations. 

 
Listing 17. LFH SubSegment allocation 

int LocalDataIndex = 0; 

 

//uses the SizeIndex of the _HEAP_BUCKET to  

//get the address of the LFH for this bucket 

_LFH_HEAP *LFH = GetLFHFromBucket(HeapBucket); 

 

//figure this out yourself :) 

if(aHeapBucket->Affinity == 1)  

{ 

 AllocateAndUpdateLocalDataIndex(); 

} 

 

//get the LocalData and LocalSegmentInfo 

//structures based on Affinity and SizeIndex 

_HEAP_LOCAL_DATA *HeapLocalData =  

 LFH->LocalData[LocalDataIndex]; 
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_HEAP_LOCAL_SEGMENT_INFO *HeapLocalSegmentInfo =  

 HeapLocalData->SegmentInfo[HeapBucket->SizeIndex]; 

 

//try to use the 'Hint' SubSegment first 

//otherwise this would be 'ActiveSubsegment' 

_HEAP_SUBSEGMENT *SubSeg = HeapLocalSegmentInfo->Hint; 

_HEAP_SUBSEGMENT *SubSeg_Saved = HeapLocalSegmentInfo->Hint; 

 

if(SubSeg) 

{ 

 while(1) 

 { 

  //get the current AggregateExchange information 

  _INTERLOCK_SEQ *AggrExchg = SubSeg->AggregateExchg; 

  int Offset = AggrExchg->FreeEntryOffset; 

  int Depth = AggrExchg->Depth; 

  int Sequence = AggrExchg->Sequence 

   

  //store the old values, to ensure atomic swapping 

  _INTERLOCK_SEQ AggrExchg_Saved; 

  AggrExchg_Saved.OffsetAndDepth = AggrExchg.OffsetAndDepth; 

  AggrExchg_Saved.Sequence = Sequence; 

 

  //continue only if this is a valid SubSegment 

  _HEAP_USERDATA_HEADER *UserBlocks = SubSeg->UserBlocks; 

  if(!Depth ||  

   !UserBlocks ||  

   SubSeg->LocalInfo != HeapLocalSegmentInfo) 

  { 

   break; 

  } 

 

  //this gets the offset from the AggregateExchg  

  //(block size) and creates a byte offset 

  int ByteOffset =  Offset * 8; 

  LFHChunk = UserBlocks + ByteOffset; 

 

  //the next offset is store in the 1st 2-bytes  

  //of the userdata (this can probably be abused ;)) 

  short NextOffset = UserBlocks +  

   ByteOffset +  

   sizeof(_HEAP_ENTRY)); 

 

  //store the updated offset, depth and sequence 

  //new_offset = current_offset += BucketSize 

  //new_depth = current_depth-- 

  //new_sequence = depends on current depth 

  _INTERLOCK_SEQ AggrExchg_New; 

  AggrExchg_New.Offset = NextOffset; 

  AggrExchg_New.Depth = Depth--; 

  if(AggrExchg_New.Depth == -1) 

   AggrExchg_New.Sequence = Sequence--; 

  else 

   AggrExchg_New.Sequence = Sequence; 

 

  //i.e InterlockedCompareExchange 

  if(AtomicSwap(AggrExchg, AggrExchg_New)) 

  { 

   UpdateHeaders(LFHChunk); 

   return LFHChunk; 

  } 

  else 

  { 
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   UpdateAffinity(); 

   SubSeg = SubSeg_Saved; 

  } 

 } 

}  

 
Note: Although left out for formatting reasons, it should be understood that all the code 
in RtlpLowFragHeapAllocFromContext() is wrapped in a try/catch block. This is done so 
that if there is any failure in the LFH, NULL will be returned and the back-end allocator 
will attempt to service the memory request. 

 
If the Hint and Active SubSegments have failed, whether from lack of initialization or being 
invalid, RtlpLowFragHeapAllocFromContext() must acquire a new SubSegment by allocating 
memory (using the back-end) and dividing a large chunk of memory to a HeapBin. Once this 
stage has been completed, the aforementioned code above will service the request via the 
ActiveSubsegment.  
 
To service a request in the event of both SubSegments failing, a new chunk of memory must be 
allocated for the front-end heap. The amount of memory to be requested is not arbitrary, but 
based on the chunk size requested and the total amount of memory available to the heap. The 
following pseudo-code is something I refer to as the Magic Formula. It calculates how much 
memory to request from the back-end so that it may be split up into a UserBlock for a certain 
HeapBucket: 

 
Listing 18. LFH UserBlocks allocation size algorithm 

int TotalBlocks = HeapLocalSegmentInfo->Counters->TotalBlocks; 

 

if(MaxRunLenReached) 

 TotalBlocks = TotalBlocks / 16; 

 

int BucketAffinity = HeapBucket->Affinity & 1; 

 

int BucketBytesSize =  RtlpBucketBlockSizes[HeapBucket->SizeIndex]; 

 

int StartIndex = 7; 

 

if(BucketBytesSize < 256) 

 BucketAffinity--; 

if ( dword_77F97594 > RtlpHeapMaxAffinity >> 1) ) 

 BucketAffinity++; 

 

int BlockMultiplier = 4 - BucketAffinity; 

 

if(TotalBlocks < (1 << BlockMultiplier)) 

 TotalBlocks = 1 << BlockMultiplier; 

 

if(TotalBlocks > 1024) 

 TotalBlocks = 1024; 

 

//used to calculate cache index and size to allocate 

int TotalBlockSize = TotalBlocks * (BucketBytesSize + sizeof(_HEAP_ENTRY)) + 

0x18; 

 

if(TotalBlockSize > 0x78000) 

 TotalBlockSize = 0x78000; 
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//calculate the cahce index 

//upon a cache miss, this index will determine 

//the amount of memory to be allocated 

if(TotalBlockSize >= 0x80)  

{ 

 do 

 { 

  StartIndex++; 

 }while(TotalBlockSize >> StartIndex); 

} 

 

//we will @ most, only allocate 40 pages (0x1000 bytes per page) 

if((unsigned)StartIndex > 0x12) 

 StartIndex = 0x12; 

 

int UserBlockCacheIndex = StartIndex; 

 

if(HeapBucket->Affinity & 6) 

 UserBlockCacheIndex = 0x12; 

 

//allocate space for a _HEAP_USERDATA_HEADER along with room 

//for ((1 << UserBlockCacheIndex) / BucketBytesSize) heap chunks 

void *pUserData =  

RtlpAllocateUserBlock(LFH, UserBlockCacheIndex, BucketByteSize + 8); 

 

_HEAP_USERDATA_HEADER *UserData = (_HEAP_USERDATA_HEADER*)pUserData; 

if(!pUserData) 

 return 0; 

 

 
The UserBlockCacheIndex variable in the code above is used as an index into an array of cached 
items. If there is a cache miss, this same value is used to calculate how much memory to allocate 
for a UserBlocks chunk. This UserBlocks chunk will later be split up into BucketSize chunks. Let’s 
see how RtlpAllocateUserBlock, when not using cached items, is basically a wrapper for 
RtlpAllocateHeap: 

 
Listing 19. RtlpAllocateUserBlock without caching 

int AllocAmount = 1 << UserBlockCacheIndex; 

if(AllocAmount > 0x78000) 

 AllocAmount = 0x78000; 

 

UserBlock = RtlAllocateHeap(LFH->Heap, 0x800000, AllocAmount - 8); 

if(UserBlock)  

{ 

 LFH->CacheAllocs++; 

 

 //Assign the _HEAP_USERDATA_HEADER->SizeIndex 

 *(UserBlock+8) = UserBlockCacheIndex; 

  

} 

 

return UserBlock; 

 
 
Although memory has been allocated, it is not quite ready to be used by the LFH. It must first be 
coupled with a _HEAP_SUBSEGMENT. This SubSegment is either acquired from a previously 
deleted one or created at an address retrieved from _LFH_BLOCK_ZONE list.  
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Listing 20. LFH Pre-SubSegment initialization setup 
int UserDataBytesSize = 1 << UserData->AvailableBlocks; 

if(UserDataBytesSize > 0x78000) 

 UserDataBytesSize = 0x78000; 

 

int UserDataAllocSize = UserDataBytesSize - 8; 

 

//Increment SegmentCreate to denote a new SubSegment created 

InterlockedExchangeAdd(&LFH->SegmentCreate, 1); 

 

DeletedSubSegment = ExInterlockedPopEntrySList(HeapLocalData); 

_HEAP_SUBSEGMENT *NewSubSegment = NULL; 

if (DeletedSubSegment) 

{ 

 // if there are any deleted subsegments, use them 

 NewSubSegment = (_HEAP_SUBSEGMENT *)(DeletedSubSegment - 0x18); 

} 

else 

{ 

 NewSubSegment =  

  RtlpLowFragHeapAllocateFromZone(LFH, LocalDataIndex); 

  

 //return failure use back-end 

 if(!NewSubSegment) 

  return 0; 

} 

 

//this function will setup the _HEAP_SUBEMENT structure  

//and chunk out the data in 'UserData' to be of HeapBucket->SizeIndex chunks 

RtlpSubSegmentInitialize(LFH,  

 NewSubSegment, 

 UserBlock, 

 RtlpBucketBlockSizes[HeapBucket->SizeIndex], 

 UserDataAllocSize,HeapBucket); 

 

//each UserBlock starts with the same sig 

UserBlock->Signature = 0xF0E0D0C0; 

 
RtlpLowFragHeapAllocateFromZone() serves as a dual purpose function; either finding a pointer 
for a _HEAP_SUBSEGMENT or creating several _LFH_BLOCK_ZONE structures for future address 
tracking.  
 
The function will first check to see if there are any valid _LFH_BLOCK_ZONE structures holding 
an address to be used by a SubSegment. If that is not the case or it has exceeded the Limit for 
which it was designed, it will then allocate 0x3F8 (1016) bytes of memory to store new 
_LFH_BLOCK_ZONE objects. The code below shows how RtlpLowFragHeapAllocateFromZone() 
typically works. 
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Listing 21. RtlpLowFragHeapAllocateFromZone 
_LFH_BLOCK_ZONE *CrtZone =  

LFH->LocalData[LocalDataIndex]->CrtZone; 

 

_LFH_BLOCK_ZONE *CrtZoneFlink = NULL; 

 

while(1)  

{ 

 while(1) 

 { 

  while(1) 

  { 

   //Flink == NULL => create initial zones 

   CrtZoneFlink = CrtZone->ListEntry->Flink; 

   if(!CrtZone-Flink) 

    break; 

 

   void *FreePointer = CrtZoneFlink->FreePointer; 

 

   //This will increment it to the next SubSegment 

   void *FreePointer_New =  

    FreePointer + LFH->ZoneBlockSize; 

 

   //if we've exceeded the limit 

   //create more zones 

   if(FreePointer_New >= CrtZoneFlink->Limit) 

    break; 

 

   //InterlockedCompareExchange 

   //loop if this fails 

   if(CompareExchange( 

    &CrtZoneFlink->FreePointer,  

    FreePointer_New)) 

    return FreePointer 

  } 

 

  if (CrtZoneFlink == CrtZone->ListEntry.Flink ) 

   break; 

 } 

 

 //this will effectively give us 31 _LFH_BLOCK_ZONE  

 //structures to use for keeping track of userdata 

 void *NewLFHBlockZone =  

  RtlAllocateHeap(LFH->Heap, 0x800000u, 0x3F8u); 

 

 if(!NewLFHBlockZone) 

  return 0; 

 

 //if the CrtZone's ListEntry is empty 

 if (CrtZoneFlink == CrtZone->ListEntry.Flink ) 

 { 

  //link in the newly created structure 

  //into the LFH->SubSegmentZones 

  LinkInBlockZone(LFH, NewLFHBlockZone); 

 

  //points to the end of the allocation 

  NewLFHBlockZone->Limit = NewLFHBlockZone + 0x3F8; 

 

  //sizeof(_LFH_BLOCK_ZONE) == 0x10 

  char *AlignedZone = 

   RoundAlign(NewLFHBlockZone + 0x10); 

 

  NewLFHBlockZone->FreePointer = AlignedZone; 
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  CrtZone->ListEntry.Flink = NewLFHBlockZone; 

 

  continue; 

 } 

 

 //if we failed, free the data 

 RtlFreeHeap(LFH->Heap, 0x800000, NewLFHBlockZone); 

} 

 
Although the code above may seem a bit difficult to understand, it only has a few design 
purposes in mind. The inner most loop ensures atomic swapping of FreePointers to avoid race 
conditions when dealing with multiple threads. The outer most loop will guarantee that this 
function creates new BlockZones in the event that they are exhausted.  
 
After an address is acquired from RtlpLowFragHeapAllocateFromZone(), the SubSegment can 
be initialized in RtlpSubSegmentInitialize(). As the name implies, it is responsible for initializing 
the _HEAP_SUBSEGMENT, taking a variety of arguments; such as the newly created 
SubSegment (NewSubSegment), the recently allocated memory (UserBlock), the amount of 
memory available (UserDataAllocSize), and the size of the chunks to create (HeapBucket  / 
BucketBytesSize). 

 
RtlpSubSegmentInitialize() will first get the LocalSegmentInfo and LocalData structures based 
of the HeapBucket size. After ensuring that a certain Affinity state is guaranteed, it will then 
proceed to calculate exactly how many chunks are going to be available for this UserBlock. Once 
the number of chunks to create is determined, it will iterate through the large chunk of memory, 
writing a header for each chunk. Finally the _INTERLOCK_SEQ has its initial values set to have 
the Depth as the NumberOfChunks and the FreeEntryOffset equal to 0x2.  

 
Listing 22. RtlpSubSegmentInitialize 

void *UserBlockData = UserBlock + sizeof(_HEAP_USERDATA_HEADER); 

 

_HEAP_LOCAL_SEGMENT_INFO *LocalSegmentInfo =  

LFH->LocalData[NewSubSegment->AffinityIndex]->SegmentInfo[HeapBucket-

>SizeIndex]; 

 

_HEAP_LOCAL_DATA *LocalData =  

LFH->LocalData[NewSubSegment->AffinityIndex]->Segmentinfo[HeapBucket-

>SizeIndex]->LocalData; 

 

if (!((HeapBucket->Affinity >> 1) & 3))  

{ 

 int TotalBucketByteSize = BucketByteSize + sizeof(_HEAP_ENTRY); 

 int BucketBlockSize = TotalBucketByteSize / 8; 

  

 //sizeof(_HEAP_USERDATA_HEADER) == 0x10 

 int NumberOfChunks = (UserDataAllocSize - 0x10) /  

  TotalBucketByteSize; 

 

 //skip past the header, so we can start chunking 

 void *pUserData = UserBlock + sizeof(_HEAP_USERDATA_HEADER); 

 

  

//assign the SubSegment 

 UserBlock->SubSegment = NewSubSegment; 
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 //sizeof(_HEAP_USERDATA_HEADER) == 0x10 (2 blocks) 

 int SegmentOffset = 2; 

 

 _INTERLOCK_SEQ AggrExchg_New; 

 AggrExchg_New.FreeEntryOffset = 2; 

 

 if(NumberOfChunks)  

 { 

  int NumberOfChunksItor = NumberOfChunks; 

  do  

  { 

   SegmentOffset += BucketBlockSize; 

   pUserData = UserBlockData; 

   UserBlockData += BucketByteSize; 

 

   //next FreeEntryOffset 

   *(WORD*)(pUserData + 8) = SegmentOffset; 

 

   //Set _HEAP_ENTRY.LFHFlags 

   *(BYTE*)(pUserData + 6) = 0x0; 

 

   //Set _HEAP_ENTRY.UnusedBytes 

   *(BYTE*)(pUserData + 7) = 0x80; 

 

   EncodeDWORD(LFH, pUserData) 

  } 

  while(NumberOfChunksItor--); 

 } 

 

 //-1 indicates last chunk 

 //in the UserBlock (_HEAP_USERDATA_HEADER) 

 *(WORD*)(pUserData + 8) = -1; 

 

 //Sets all the values for this subsegment 

 InitSubSegment(NewSubSegment); 

 

 //updates the bucket counter to reflect 

 //NumberOfChunk as total blocks and 

 //sets the SubSegmentCount 

 UpdateBucketCounters(LocalSegmentInfo); 

 

 //will be atomically assigned to the 

 //NewSubSegment's _INTERLOCK_SEQ 

 AggrExchg_New.Depth = NumberOfChunks; 

 AggrExchg_New.Sequence = AggrExchg_Saved.Sequence + 1; 

 

 //InterlockedCompareExchange64 

 AtomicSwap(&NewSubSegment->AggregateExchg, AggrExchg_New); 

} 

 
Finally, after the UserBlocks have been allocated, assigned to a SubSegment and the 
SubSegment has been initialized, the LFH can set the ActiveSubsegment to the one that was just 
initialized. It will operate on some locking mechanisms, eventually atomically assigning the 
ActiveSubsegment. Lastly execution will resume at the point shown in Listing 17. 
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Listing 23. ActiveSubsegment assignment 
//now used for LFH allocation for a specific bucket size 

AtomicSwap(&HeapLocalSegmentInfo->ActiveSegment, NewSubSegment); 

  
 

Overview 

 

RtlpLowFragHeapAllocFromContext Simple Overview (No Caching)

HeapLocalData = LFH->LocalData[LocalDataIndex] == HLD

HeapLocalSegmentInfo = HeapLocalData->SegmentInfo[HeapBucket->SizeIndex] == HLSI

Is HLSI->Hint populated?

Return Chunk

IS HLSI->ActiveSubsegment 

populated?

Return Failure

Calculate size for UserBlocks

RtlpAllocateUserBlock() Succeeds?

RtlpSubSegmentInitialize()
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Diagram 5. Front-end allocation 
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Example 

 
The best way to fully understand the allocation process is with an example. Let’s assume that 
the LFH has been enabled and we’re on our first allocation request that will be fulfilled by the 
front-end allocator. A request has been received for 0x28 (40) bytes, which after adding space 
for a header will be 0x30 (48) bytes (or 0x6 blocks). It will also be assumed that we’re using the 
ActiveSubsegment from SegmentInfo[0x6] located in the _HEAP_LOCAL_DATA structure.  
 
 Note: LFH->LocalData[0]->SegmentInfo[0x6]->ActiveSubsegment->UserBlocks 
 
Based on the Magic Formula shown above, we can deduce that there are going to be 0x2A 
chunks for 0x30 bytes (i.e. the Depth). The initial offset will be set to 0x2 because the 
_HEAP_USERDATA_HEADER is 0x10 bytes wide.   
 
Each chunk in the UserBlock will contain an 8-byte header, for which the first 4-bytes are 
encoded, and then n-bytes of user writable data to be returned to the calling process. The first 
2-bytes of the user-writable data hold the next offset to be assigned to the _INTERLOCK_SEQ. 
 
Each offset is calculated from the beginning of the UserBlock chunk and referenced in terms of 
blocks. The byte offset of the next available chunk would be UserBlocks + FreeEntryOffset * 
0x8. 
 

text

NextOffset = 0x08 NextOffset = 0x0E NextOffset = 0x14 NextOffset = 0x1A

NextOffset = 0x14 NextOffset = 0x26 NextOffset = 0x2C NextOffset = 0x32

... ... … NextOffset = 0xFFFF

UserBlock Chunks for 0x30 Bytes

[0x6 Blocks]

Next Virtual Address = UserBlock + (NextOffset * 0x8)

AggrExchg.Depth = 0x2A

AggrExchg.FreeEntryOffset = 0x02

+0x02 +0x08 +0x0E +0x14

+0x1A +0x20 +0x26 +0x2C

Last Entry

Diagram 6. Full UserBlock for Bucket 0x6 
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After an initial allocation is made, the Depth and offset are updated to reflect the next available 
chunk in the UserBlock. While the memory is not actually moved, just indexed differently, the 
follow diagram will show the available memory after one allocation. Notice how the Offset 
holds the value previously stored in a chunk (i.e. NextOffset) and the Depth is decremented by 
0x1; indicating we have used one block and have 0x29 remaining. 
 

text

NextOffset = 0x0E NextOffset = 0x14 NextOffset = 0x1A

NextOffset = 0x14 NextOffset = 0x26 NextOffset = 0x2C NextOffset = 0x32

... ... … NextOffset = 0xFFFF

UserBlock Chunks for 0x30 Bytes

[0x6 Blocks]

Next Virtual Address = UserBlock + (NextOffset * 0x8)

AggrExchg.Depth = 0x29

AggrExchg.FreeEntryOffset = 0x08

+0x08 +0x0E +0x14

+0x1A +0x20 +0x26 +0x2C

Last Entry

Diagram 7. UserBlock after the 1st allocation for 0x30 bytes 
  



39 
 

After the second allocation, offset UserBlock+0xE will be next free chunk. After that, Userblock+ 
0x14 will be the next free chunk, and so on. It keeps incrementing the Offset and decrementing 
the Depth until the Depth equals 0; indicating the need to allocate more memory for yet 
another UserBlock. The following diagram is the 2nd consecutive allocation for 0x30 bytes. We 
will see how these blocks are released in the Freeing section. 
 

text

NextOffset = 0x14 NextOffset = 0x1A

NextOffset = 0x14 NextOffset = 0x26 NextOffset = 0x2C NextOffset = 0x32

... ... … NextOffset = 0xFFFF

UserBlock Chunks for 0x30 Bytes

[0x6 Blocks]

Next Virtual Address = UserBlock + (NextOffset * 0x8)

AggrExchg.Depth = 0x28

AggrExchg.FreeEntryOffset = 0x0E

+0x0E +0x14

+0x1A +0x20 +0x26 +0x2C

Last Entry

Diagram 8. UserBlock after the 2nd consecutive allocation for 0x30 bytes 
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Freeing 
 
Now that a base understanding of how memory is acquired in Windows 7, I can now discuss 
how it is released. A chunk in use will eventually need to be freed by the application and given 
back to the heap manager. This process starts at RtlFreeHeap(), which takes the heap, flags, and 
the chunk to be freed as arguments. This function’s first order of business is to figure out if this 
chunk is actually free-able and then inspect the chunk’s header to determine which piece of the 
heap manager should be responsible for releasing it.  

 
Listing 24. RtlFreeHeap 

ChunkHeader = NULL; 

 

//it will not operate on NULL 

if(ChunkToFree == NULL) 

 return; 

 

//ensure the chunk is 8-byte aligned 

if(!(ChunkToFree & 7)) 

{ 

 //subtract the sizeof(_HEAP_ENTRY) 

 ChunkHeader = ChunkToFree - 0x8; 

 

 //use the index to find the size 

 if(ChunkHeader->UnusedBytes == 0x5) 

  ChunkHeader -=  

   0x8 * (BYTE)ChunkToFreeHeader->SegmentOffset; 

} 

else 

{ 

 RtlpLogHeapFailure(); 

 return; 

} 

 

//position 0x7 in the header denotes 

//whether the chunk was allocated via 

//the front-end or the back-end (non-encoded ;) ) 

if(ChunkHeader->UnusedBytes & 0x80) 

 RtlpLowFragHeapFree(Heap, ChunkToFree); 

else 

 RtlpFreeHeap(Heap, Flags | 2, ChunkHeader, ChunkToFree); 

  

return; 
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Back-end Freeing 

 
The back-end manager is responsible for handling all memory that isn’t handled by the front-
end heap; either due to the size or the lack of a Low Fragmentation heap. While all allocations 
over 0xFE00 blocks are handled by VirtualAlloc()/VirtualFree(), all memory management that is 
greater than 0x800 blocks is handled by the back-end; along with any memory that cannot be 
serviced by the front-end.  

 

RtlpFreeHeap 

 
RtlpFreeHeap() takes a _HEAP, Flags, ChunkHeader, and the ChunkToFree as arguments. It will 
first attempt to decode the chunk header if it is encoded, then proceed to find an appropriate 
ListHint within the BlocksIndex. If it cannot find a sufficient index it will use BlocksIndex-
>ArraySize-1 as the ListHint. 

  
Listing 25. RtlpFreeHeap BlocksIndex search 

if(Heap->EncodeFlagMask) 

 DecodeAndValidateChecksum(ChunkHeader); 

 

int ChunkSize = ChunkHeader->Size; 

_HEAP_LIST_LOOKUP *BlocksIndex = Heap->BlocksIndex; 

 

while(1) 

{ 

 //if the chunk will fit in this BlocksIndex, break out 

 if(ChunkSize < BlocksIndex->ArraySize) 

  break; 

 

 //if the chunk is too big for this blocksindex and there is NOT  

 //and extended lookup, then free onto FreeList[BlocksIndex->ArraySize-1] 

 if(!BlocksIndex->ExtendedLookup) 

 { 

  ChunkSize = BlocksIndex->ArraySize - 1; 

  break; 

 } 

 

 //next item in the linked list 

 BlocksIndex = BlocksIndex->ExtendedLookup; 

} 

 
Note: This process of finding a ListHint Index and returning will from here on out be 
referred to as BlocksIndexSearch(). It will take a _HEAP_LIST_LOOKUP and a ChunkSize 
as an input. It will walk the linked list updating the BlocksIndex argument until it has 
found a candidate, lastly returning a FreeListIndex. 

 
Now that a _HEAP_LIST_LOOKUP has been found, the function can attempt to use a specific 
ListHint. The ListHint can be a specific value, such as ListHints[0x6], or, if the chunk to free is 
larger than what the BlocksIndex manages, it could reside in ListHints[BlocksIndex->ArraySize-
BaseIndex-1]. (This can be thought of as a FreeList[0] type list.)  

  



42 
 

Listing 26. RtlpFreeHeap ListHint retrieval 
//attempt to locate a freelist 

_LIST_ENTRY *ListHint = NULL; 

 

//if the chunk can be managed by specific BlocksIndex 

if(ChunkSize < (BlocksIndex->ArraySize - 1) ||  

 BlocksIndex->ExtendedLookup != 0x0 && 

 ChunkSize == (BlocksIndex->ArraySize - 1)) 

{ 

 //get the offset into the ListHints 

 int BaseIndex = BlocksIndex->BaseIndex; 

 int FreeListIndex =  

  RelativeSize(BlocksIndex, ChunkSize - BaseIndex); 

 

 //acquire a freelist 

 ListHint = BlocksIndex->ListHints[FreeListIndex]; 

} 

 
If a ListHint has been located and the blink does not contain a HeapBucket, then the back-end 
manager will update the value used in the LFH heuristic. Since a chunk is being put back on the 
heap, it will subtract 0x2 from the counter. This means that to actually enable the LFH for a 
given Bucket, you must see at least 0x11 consecutive allocations.  
 
For example, if 0x10 requests are received for Bucket[0x6], then 0x2 of those chunks are 
released back to the heap, followed by 0x2 allocations for the same size, the LFH will NOT be 
enabled for Bucket[0x6]. The threshold must be met before the activation heuristic will perform 
heap maintenance. 

 
Listing 27. RtlpFreeHeap LFH counter decrement 

if(ListHint != NULL) 

{ 

 int FreeListBlink = ListHint->Blink; 

  

 //if the blink is not populated with a HeapBucket 

 //decrement the counter, as we just freed a chunk 

 if( !(BYTE)FreeListBlink & 1) 

 { 

  if(FreeListBlink >= 2) 

   ListHint->Blink = FreeListBlink - 2; 

 } 

} 

 
After updating the counter for LFH activation, RtlpFreeHeap() will attempt to coalesce the chunk 
if the heap permits doing so. Chunk coalescing is an important process in which the heap looks 
at the two chunks adjacent to the piece of memory being freed. This is done to avoid having 
many small free chunks residing next to each other (The Low Fragmentation heap directly 
addresses this problem). Although RtlpCoalesceFreeBlocks() is always called, chunk coalescing 
will only occur if an adjacent chunk is marked as FREE. 
 
Once coalescing of adjacent blocks is completed a check is made to ensure that the new total 
block size isn’t above the Heap->DeCommitThreshold along with ensuring that it is not required 
to be handled by virtual memory. Lastly, this piece of the algorithm will mark the chunk as FREE 
and having zero unused bytes. 

  



43 
 

Listing 28. RtlpFreeHeap Chunk coalescing and header reassignment  
//unless the heap says otherwise, coalesce the adjacent free blocks 

int ChunkSize = ChunkHeader->Size; 

if( !(Heap->Flags & 0x80) ) 

{ 

 //combine the adjacent blocks 

 ChunkHeader =  

  RtlpCoalesceFreeBlocks(Heap, ChunkHeader, &ChunkSize, 0x0); 

} 

 

//reassign the ChunkSize if neccessary 

ChunkSize = ChunkHeader->Size; 

 

//if the coalesced chunk is bigger than the 

//decommit threshold for this heap, decommit the memory 

if(ChunkHeader->Size > DeCommitThreshold || 

   ChunkHeader->Size + TotalFreeBlocks > DeCommitThreshold) 

{ 

 RtlpDeCommitFreeBlock(Heap, ChunkHeader, ChunkSize, 0x0); 

 return; 

} 

 

if(ChunkSize > 0xFE00)  

{ 

 RtlpInsertFreeBlock(Heap, ChunkHeader, ChunkSize); 

 UpdateTagEntry(ChunkHeader); 

 return; 

} 

 

//mark the chunk as FREE 

ChunkToFreeHeader->Flags = 0x0; 

ChunkToFreeHeader->UnusedBytes = 0x0; 

 
A free chunk must be placed in a certain position on the FreeLists or, at the very minimum, on 
the FreeList[0] type structure held ListHints[ArraySize-BaseIndex-1]. The first step in this 
process is walking the _HEAP_LIST_LOOKUP looking for an insertion point. Then it will walk the 
ListHead, which if you remember, is the same pointer as Heap->FreeLists. This pointer starts at 
the smallest free chunk and links upwards towards the largest.  

 
A loop is setup to iterate through all the _HEAP_LIST_LOOKUP structures available to this heap. 
The algorithm will then grab the ListHead and do a few initial verifications; the first being a 
check to see if the list is empty. If it is, the loop is terminated and execution continues. The 
second check is to ensure that the chunk to be freed will actually fit in the list. It does this by 
ensuring that the last item in the list (ListHead->Blink) has a size that is greater than the chunk 
to be freed.  

 
Finally it will check the first item on the ListHead, determining if it can insert before it. If it 
cannot, the FreeLists will be walked to determine where the newly freed chunk can be linked in; 
starting at the FreeListIndex position. [Please see Diagram 3 for more information on the 
FreeLists]. You can now see why these items are referred to as ListHints because they aren’t 
actually dedicated lists terminated by a link to the sentinel node; instead they are pointers to a 
location within the overall FreeLists. 
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Listing 29. RtlpFreeHeap Insertion point search 
//FreeList will determine where, if anywhere there is space 

BlocksIndex = Heap->BlocksIndex; 

_LIST_ENTRY *InsertList = Heap->FreeLists; 

 

//attempt to find where to insert this item 

//on the ListHead list for a particular BlocksIndex 

if(BlocksIndex) 

{ 

 //find a BlocksIndex for storage 

 int FreeListIndex = BlocksIndexSearch(BlocksIndex, ChunkSize) 

 

 while(BlocksIndex != NULL) 

 { 

  _HEAP_ENTRY *ListHead = BlocksIndex->ListHead; 

 

  //if the ListHead is empty 

  //our insert list will be the sentinel node 

  if(ListHead == ListHead->Blink) 

  { 

   InsertList = ListHead; 

   break; 

  } 

 

  //if the chunk is larger than the largest 

  //entry, we'll insert it after 

  if(ChunkSize > ListHead->Blink.Size) 

  { 

   InsertList = ListHead; 

   break; 

  } 

 

  //pick the insertion point behind the 1st 

  //chunk larger than the ChunkToFree 

  _LIST_ENTRY *NextChunk = ListHead->Flink; 

  if(NextChunk.Size > ChunkSize) 

  { 

   InsertList = NextChunk; 

   break; 

  } 

 

  NextChunk = BlocksIndex->ListHints[FreeListIndex]; 

  while(NextChunk != ListHead) 

  { 

   //there is actually some decoding done here 

   if(NextChunk.Size > ChunkSize) 

   { 

    InsertList = NextChunk; 

    break; 

   } 

 

   NextChunk = NextChunk->Flink; 

  } 

 

  //if we've found an insertion 

  //spot terminate the loop 

  if(InsertList != Heap->FreeLists) 

   break; 

 

  BlocksIndex = BlocksIndex->ExtendedLookup; 

 } 

} 
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Note: For brevity’s sake, the decoding of the chunk headers to acquire the size is left 
out. Please don’t mistake this un-encoded header dereferencing.  

 
With an insertion point pinpointed, RtlpFreeHeap() will ensure that the chunk is linked into the 
proper location. Once the final location for chunk insertion is located, it is safely linked into the 
FreeList. To my knowledge this functionality is new and directly addresses Brett Moore’s 
Insertion Attack (Moore 2005). Finally the chunk is placed on the appropriate FreeList and the 
ListsInUseUlong is updated accordingly. 

 
Listing 30. Safe link-in 

while(InsertList != Heap->FreeLists) 

{ 

 if(InsertList.Size > ChunkSize) 

  break; 

 

 InsertList = InsertList->Flink; 

} 

 

//R.I.P FreeList Insertion Attack 

if(InsertList->Blink->Flink == InsertList) 

{ 

 ChunkToFree->Flink = InsertList;        

 ChunkToFree->Blink = InsertList->Blink;   

 InsertList->Blink->Flink = ChunkToFree; 

 InsertList->Blink = ChunkToFree        

} 

else 

{ 

 RtlpLogHeapFailure(); 

} 

 

BlocksIndex = Heap->BlocksIndex; 

if(BlocksIndex) 

{ 

 FreeListIndex = BlocksIndexSearch(BlocksIndex, ChunkSize); 

 

 int RelSize = ChunkSize - BlocksIndex->BaseIndex; 

 FreeListIndex = RelativeSize(BlocksIndex, RelSize); 

 

 _LIST_ENTRY *FreeListToUse = BlocksIndex->ListHints[FreeListIndex]; 

  

 if(ChunkSize >= FreeListToUse.Size) 

 { 

  BlocksIndex->ListHints[FreeListIndex] = ChunkToFree; 

 } 

 

 //bitwise OR instead of the XP XOR (R.I.P Bitmap flipping (hi nico)) 

 if(!FreeListToUse) 

 { 

  int UlongIndex = Chunkize - BlocksIndex->BaseIndex >> 5; 

  int Shifter = ChunkSize - BlocksIndex->BaseIndex & 1F; 

  BlocksIndex->ListsInUseUlong[UlongIndex] |= 1 << Shifter; 

 } 

 EncodeHeader(ChunkHeader); 

} 
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Note: Notice that the ListsInUseUlong is using a bitwise OR, instead of the previously 
used XOR. This ensures that a populated list is always marked as populated and an 
empty list can only be marked as populated.  
 
Hint: What would happen if RtlpLogHeapFailure() doesn’t terminate execution? 
(Flink/Blink never updated…) 
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Overview 
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Diagram 9. RtlpFreeHeap overview 
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Front-end Freeing 
 

Front-end allocation is handled by the Low-Fragmentation heap. While it is not used first, it is 
the only heap manager used once a certain heuristic is triggered. The LFH was designed to 
prevent memory fragmentation and support frequent use of specific sizes, differing greatly from 
the old front-end manager, the Lookaside List, which kept track of chunks below 1024 bytes in a 
linked list structure. While the BlocksIndex structure can track chunks that are greater than 16k 
in size, the LFH will only be used for chunks below 16k.  

 

RtlpLowFragHeapFree 

 
RtlpLowFragHeapFree() takes two arguments, a _HEAP structure and a pointer to the chunk to 
free. The function first checks to see if certain flags are set in the ChunkToFree header. If they 
are equal to 0x5, then an adjustment is made to change the location of the header. It then finds 
the associated SubSegment, which in turn will let it access all the members needed for memory 
tracking. It will also reset some values in the header to reflect a recently freed chunk. 

 
Listing 31. RtlpLowFragHeapFree Subsegment acquisition 

//hi ben hawkes :) 

_HEAP_ENTRY *ChunkHeader = ChunkToFree - sizeof(_HEAP_ENTRY); 

if(ChunkHeader->UnusedBytes == 0x5) 

 ChunkHeader -= 8 * (BYTE)ChunkHeader->SegmentOffset; 

 

_HEAP_ENTRY *ChunkHeader_Saved = ChunkHeader; 

 

//gets the subsegment based off  

//the LFHKey, Heap and ChunkHeader 

_HEAP_SUBSEGMENT SubSegment = GetSubSegment(Heap, ChunkToFree); 

_HEAP_USERDATA_HEADER *UserBlocks = SubSegment->UserBlocks; 

 

//Set flags to 0x80 for LFH_FREE (offset 0x7) 

ChunkHeader->UnusedBytes = 0x80; 

 

//Set SegmentOffset or LFHFlags (offset 0x6) 

ChunkHeader->SegmentOffset = 0x0; 

 
Note: Ben Hawkes explained how overwriting the chunk header can be used to alter the 
ChunkHeader pointer, leading to freeing of semi-controlled memory. You will have a 
maximum of ChunkHeader – (0x8 * 0xFF) memory address space to choose from.  

 
A proper chunk header has been located, so now the function will need to calculate a new 
offset. The offset will be used to write into the UserBlock that is associated with the 
SubSegment (calculated above). Some initial checks are made to ensure that the SubSegment 
hasn’t over stepped its bounds before actually freeing the chunk. If these conditions aren’t 
made, values are set to indicate that the SubSegment needs some maintenance performed 
[excluded for simplicity].  
 
Next an attempt will be made to get an _INTERLOCK_SEQ from the SubSegment, acquiring the 
current Offset, Depth, and Sequence. The next offset is collected from the chunk that is 
forwardly adjacent to the chunk being freed. As we saw in 
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RtlpLowFragHeapAllocFromContext(), this is stored in the first 2-bytes of the chunks data. The 
Depth is incremented by one because a chunk has just been placed back into the available bin. 
 
An attempt to atomically swap the new and old values is made, breaking the loop on success 
and continuing the loop on failure.  This is typical of most of the actions in the LFH, which are 
designed to work in highly multi-threaded environments.  

 
Listing 32. RtlpLowFragHeapFree OffsetAndDepth / Sequence update 

while(1) 

{ 

 _INTERLOCK_SEQ AggrExchg; 

  

 AggrExchg.OffsetAndDepth = SubSegment->AggregateExchg.OffsetAndDepth; 

  

 AggrExchg.Sequence = SubSegment->AggregateExchg.Sequence; 

 

 int Sequence_New = AggrExchg.Sequence + 1; 

 if(AggrExchg.OffsetAndDepth >= -1) 

  Sequence_New--; 

 

 int Depth = SubSegment->AggrExchg.Depth; 

 

 _HEAP_LOCAL_SEGMENT_INFO *LocalSegmentInfo = SubSegment->LocalInfo; 

 unsigned int Sequence = SubSegment->LocalInfo->LocalData->Sequence; 

 unsigned int LastOpSequence = LocalSegmentInfo->LastOpSequence; 

  

 //setup the new INTERLOCK_SEQ 

 _INTERLOCK_SEQ AggrExchg_New; 

 AggrExchg_New.Sequence = Sequence_New; 

  

 if(Depth != SubSegment->BlockCount ||  

  LocalSegmentInfo->Counters.SubSegmentCounts == 1) 

 { 

  if(Sequence >= LastOpSequence &&  

   (Sequence - LastOpSequence) < 0x20) 

  { 

   //set the FreeEntry Offset of ChunkToFree 

   *(WORD)(ChunkHeader + 8) = AggrExchg.FreeEntryOffset; 

 

   //Subtract the size of the block being freed  

   //from the current offset; which will give 

   //you the next free chunk 

   int NewOffset = AggrExchg.FreeEntryOffset -  

    (ChunkHeader - UserBlocks) / 8; 

   AggrExchg_New.FreeEntryOffset = NewOffset; 

    

   //increase depth because we're freeing 

   AggrExchg_New.Depth = Depth + 1; 

 

   //set the Hint in the subsegment 

   Sequence = 1; 

   SubSegment->LocalInfo->Hint = SubSegment; 

  } 

  else 

  { 

   Sequence = 3; 

   AggrExchg_New.Depth = -1; //last entry 

   AggrExchg_New.FreeEntryOffset = 0; //no offset 

  } 

 } 



50 
 

 else 

 { 

  Sequence = 3; 

  AggrExchg_New.Depth = -1; //last entry 

  AggrExchg_New.FreeEntryOffset = 0; //no offset 

 } 

 

 //_InterlockedCompareExchange64 

 if(AtomicSwap(&SubSegment->AggregateExchg, AggrExchg_New, AggrExchg)) 

  break; 

 

 //if something has changed since swapping, try again 

 ChunkHeader = ChunkHeader_Saved; 

} 

 
Note: You can see this is where SubSegment->Hint is assigned for future use in the 
allocator.  

 
Finally a check is made to see if the Sequence variable has been set to 0x3. If it has, this means 
that the SubSegment needs some operations performed and that the UserBlocks chunk can be 
freed (via the back-end manager). If this is not the case, 0x1 is returned to the calling function. 

 
Listing 33. RtlpLowFragHeapFree Epilog 

//if there are cached items handle them 

UpdateCache(SubSegment); 

 

//if we've freed every item in the list 

//update the subsegment and free the UserBlock 

if(Sequence == 3) 

{ 

 PerformSubSegmentMaintenance(SubSegment); 

 RtlpFreeUserBlock(LFH, SubSegment->UserBlocks); 

} 

 

return 1; 

 
Note: PerformSubSegmentMaintenance() is not a real function, only a pseudonym for a 
series of complex instructions that will prepare the SubSegment for release or future 
use. 
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Overview 
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Diagram 10. RtlpLowFragHeapFree overview 
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Example 

 
Continuing with the example in the Allocation section of the paper (above), we will make a third 
consecutive allocation for 0x30 bytes. This means that there are 0x27 chunks left (0x30 a piece) 
and the current offset to the next chunk is 0x14 from the UserBlock; which looks like this: 

 

text

NextOffset = 0x1A

NextOffset = 0x14 NextOffset = 0x26 NextOffset = 0x2C NextOffset = 0x32

... ... … NextOffset = 0xFFFF

UserBlock Chunks for 0x30 Bytes

[0x6 Blocks]

Next Virtual Address = UserBlock + (NextOffset * 0x8)

AggrExchg.Depth = 0x27

AggrExchg.FreeEntryOffset = 0x14

+0x14

+0x1A +0x20 +0x26 +0x2C

Last Entry

Diagram 11. UserBlock after the 3rd consecutive allocation for 0x30 bytes 
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So what exactly happens when memory that was allocated from the LFH is freed? As previously 
stated, the memory is not actually moved anywhere, instead an Offset is updated which is used 
as an index to the next free location within the UserBlocks.  
 
Suppose that the first chunk that was allocated from the UserBlocks is freed. It will need to 
update the Offset to the location of the first chunk and increment the depth by 0x1. The new 
offset is calculated by taking the address of the chunk header, subtracting the address of the 
UserBlock and dividing the result by 0x8. That is, the new Offset is derived from its relative 
position from the UserBlock (in blocks). The following diagram is the state of the UserBlock after 
the initial chunk of memory has been freed. 

 

text

NextOffset = 0x1A

NextOffset = 0x14 NextOffset = 0x26 NextOffset = 0x2C NextOffset = 0x32

... ... … NextOffset = 0xFFFF

UserBlock Chunks for 0x30 Bytes

[0x6 Blocks]

Next Virtual Address = UserBlock + (NextOffset * 0x8)

AggrExchg.Depth = 0x28

AggrExchg.FreeEntryOffset = 0x02

+0x14

+0x1A +0x20 +0x26 +0x2C

Last Entry

NextOffset = 0x14

+0x02

Diagram 12. Freeing of the 1st chunk allocated for 0x30 bytes 
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Now imagine that the second chunk that was allocated is freed (before any other allocations or 
frees occur). The new offset would be 0x8 because the second chunk was freed after the first. 
Even though there is a free chunk at Offset 0x2, the next chunk to be used for an allocation 
resides at Offset 0x8. This can be thought of as a linked list that updates a piece of a pointer 
instead of the entire address.  
 

text

NextOffset = 0x1A

NextOffset = 0x14 NextOffset = 0x26 NextOffset = 0x2C NextOffset = 0x32

... ... … NextOffset = 0xFFFF

UserBlock Chunks for 0x30 Bytes

[0x6 Blocks]

Next Virtual Address = UserBlock + (NextOffset * 0x8)

AggrExchg.Depth = 0x29

AggrExchg.FreeEntryOffset = 0x08

+0x14

+0x1A +0x20 +0x26 +0x2C

Last Entry

NextOffset = 0x14

+0x02

NextOffset = 0x02

+0x08

Diagram 13. Freeing of the 2nd chunk allocated for 0x30 bytes 
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Security Mechanisms 
 

While most of the security mechanisms introduced in Windows XP SP2 are still intact in 
Windows 7 there are a few more introduced in Windows 7 (Windows Vista code base). In this 
section we’ll discuss some of these security measures, how they are implemented and finally 
some thoughts about each mechanism. That being said, I think overall the protection logic 
introduced in the Windows Vista code base produces the hardest-to-exploit Windows heap to 
date.  

 

Heap Randomization 
 

The goal of heap randomization is to ensure that the HeapBase has an unpredictable address. 
Each time a heap is created a random value is added to the base address in attempt to prevent 
predictable memory addresses.  
 
This happens in RtlCreateHeap() by creating a random 64k-aligned value to be added to the 
HeapBase. This value will attempt to produce a varying address each time the application is 
executed. Randomization can depend on the maximum size of the heap, which is calculated 
from arguments passed to HeapCreate(). The following is a code snippet from RtlCreateHeap() 
that attempts to randomize HeapBase: 

 
Listing 34. RtlCreateHeap randomization 

int BaseAddress = Zero; 

int RandPad = Zero; 

 

//get page aligned size to use as a random pad 

int RandPad = (RtlpHeapGenerateRandomValue64() & 0x1F) << 0x10; 

 

//if maxsize + pad wraps, null out the randpad 

int TotalMaxSize = MaximumSize + RandPad; 

if(TotalMaxSize < MaximumSize) 

{ 

 TotalMaxSize = MaximumSize; 

 RandPad = Zero; 

} 

 

//0x2000 = MEM_RESERVE 

//0x40 = PAGE_EXECUTE_READWRITE  

//0x04 = PAGE_READWRITE 

//this will reserve the memory at the baseaddress  

//but NOT actually commit any memory at this point 

int Opts = 0x4; 

if(Options & 0x40000 

   Opts = 0x40; 

 

if(NtAllocateVirtualmemory(-1, &BaseAddress, 0x0, &TotalMaxSize, 0x2000, Opts) 

 return 0; 

 

Heap = (_HEAP*)BaseAddress; 

 

//adjust the heap pointer by randpad if possible 

if(RandPad != Zero) 

{ 

 if(RtlpSecMemFreeVirtualMemory(-1, &BaseAddress, &RandPad, 0x8000) >= 0 ) 
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 { 

  Heap = (_HEAP*)RandPad + BaseAddress; 

  MaximumSize = TotalSize - RandPad; 

 } 

} 

 

Comments 

 
There are only a limited number of base addresses for the heap when using randomization due 
to the fact that they will be 64k-aligned (5-bits of entropy). While guessing heap addresses 
based on the lack of entropy may not be practical, it is certainly not impossible.  
 
Another less likely scenario stems from the fact that if RandPad + MaximumSize wraps, the 
RandPad will be NULL. This will effectively void the random generation of heaps. There’s two 
specific reasons I claim that this is very unlikely. The first being the lack of control on arguments 
passed to HeapCreate(). While I’m sure this happens in applications, it isn’t that common. The 
second reason is getting a MaximumSize large enough to wrap will most likely cause 
NtAllocateVirtualmemory() to return NULL, resulting in total failure.  

 

Header Encoding/Decoding 
 

Before Windows Vista, the only way to ensure an uncorrupted chunk was to validate the 1-byte 
cookie that resided in the chunk header. This obviously wasn’t the most robust situation due to 
the fact that the cookie could be brute forced but more importantly, there was header data 
before it (McDonald/Valasek 2009).  
 
This brings us to the advent of encoding heap chunk headers. The heap now encodes the 1st 4-
bytes of each _HEAP_ENTRY. This prevents the desired effect of a Size, Flags or Checksum 
overflow. The encoding is accomplished by XORing the first 3 bytes together and storing it in the 
SmallTagIndex variable, then the first 4-bytes are XORed with the Heap->Encoding (which is 
randomly created in RtlCreateHeap()). 

 

Listing 35. Heap header encoding 
EncodeHeader(_HEAP_ENTRY *Header, _HEAP *Heap) 

{ 

 if(Heap->EncodeFlagMask) 

 { 

  Header->SmallTagIndex =  

   (BYTE)Header ^ (Byte)Header+1 ^ (Byte)Header+2; 

  (DWORD)Header ^= Heap->Encoding; 

 } 

} 
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Decoding the chunk is quite similar to encoding, but it has a few extra checks before decoding is 
actually done. It makes sure that the chunk header to be decoded was encoded in the first place 
due to scenarios where heap chunk headers are not encoded.  

 
Listing 36. Heap header decoding 

DecodeHeader(_HEAP_ENTRY *Header, _HEAP *Heap) 

{ 

 if(Heap->EncodeFlagMask && (Header & Heap->EncodeFlagMask)) 

 { 

  (DWORD)Header ^= Heap->Encoding; 

 } 

} 

 

Comments 

 
Encoding the first 4-bytes of the chunk header makes it nearly impossible to successfully 
overwrite the Size, Flags, or Checksum fields without using an information leak (Hawkes 2008). 
But this doesn’t stop you from overwriting other information in the header: If a header can be 
overwritten and used before values are check-summed, then it can potentially be used to 
change the flow of execution. We’ll talk more about this in later sections. 
 
The other possible evasions deal with overwriting values resulting in the heap manager believing 
the chunk is not encoded. This can be done a few ways. The first and least likely way is to NULL 
out the Heap->EncodeFlagMask (which is initialized to 0x100000). Any future decoding or 
encoding operation will not be performed. This does have some drawbacks due to the eminent 
heap instability to follow. A new heap would likely have to be created to reap the overall desired 
effects (Un-encoded overwrites of _HEAP_ENTRY headers). 
 
The second and more likely scenario involves in overwriting the first 4-bytes of the chunk header 
so that a bitwise AND with the Heap->EncodeFlagMask returns false; giving you limited control 
over the Size, Flags, and Checksum. This is only truly useful for overwriting headers in the 
FreeLists, as checksum validation is done in the allocation routine.  
 
Finally, an attacker could target the last 4 bytes of the chunk header. We have seen previously 
that these fields are used to determine the state of a chunk header. For example, offset 0x7 
from the chunk header will be used to determine if it came from the LFH or the back-end. 
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Death of bitmap flipping 
 
In Brett Moore’s Heaps about Heaps there was a discussion on how to trick a FreeList into 
believing it was populated or unpopulated when it actually was not. This was, from there on out, 
referred to as bitmap flipping (Moore 2008). This exploitation attack was directly addressed in 
the newer versions of Windows due to a highly technical and critically acclaimed paper written 
in 2009 (McDonald/Valasek 2009) [Note: This is 100% untrue].  
 
In the Windows XP code base, the XOR operator was used to update the bitmap. If the logic to 
reach the update operation was reached and the FreeList was empty, it would XOR the current 
bit in the bitmap with itself, therefore inversing its value.  

 
Listing 37. Death of Bitmap Flipping 

// if we unlinked from a dedicated free list and emptied it,clear the bitmap 

if (reqsize < 0x80 && nextchunk == prevchunk) 

{ 

    size = SIZE(chunk); 

    BitMask = 1 << (size & 7); 

 

    // note that this is an xor 

    FreeListsInUseBitmap[size >> 3] ^= vBitMask;  

} 

 
The problem with this technique was that if the size of the chunk was corrupted, you could 
change the state of a dedicated FreeList when it shouldn’t have been altered; resulting in the 
ability to overwrite critical data in the HeapBase. 
 
When updating the bitmap to display an empty list, bitwise AND is used, ensuring that an empty 
list will stay empty and a populated list can only be marked as empty. The same goes for 
marking a list as populated, which uses a bitwise OR to alter the ListsInUseUlong. That way, an 
empty list can become populated but a populated list being freed to can’t become unpopulated.  
 
On top of all these changes, the concept of dedicated Freelists has disappeared, so an attempt 
to allocate from an empty list will only traverse the FreeList structure for a sufficiently sized 
chunk.  

 
Listing 38. Death of Bitmap Flipping 2 

//HeapAlloc 

size = SIZE(chunk); 

BitMask = 1 << (Size & 0x1F); 

BlocksIndex->ListInUseUlong[Size >> 5] &= ~BitMask; 

 

//HeapFree 

size = SIZE(chunk); 

BitMask = 1 << (Size & 0x1F); 

BlocksIndex->ListInUseUlong[Size >> 5] |= BitMask; 
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Safe Linking 
 
Safe unlinking was introduced in Windows XP SP2 to prevent 4-byte overwrites from occurring 
when unlinking a chunk from a FreeList (or coalescing two free chunks together). This has 
prevented much of the generic heap exploitation ever since.  
 
Although unlinking an item from a list could no longer be used to overwrite arbitrary addresses, 
you could overwrite an entry’s blink on FreeList[0] to point to an address you wanted to 
overwrite (Moore 2005). That way, if a chunk was to be inserted before the compromised entry, 
the blink would now point to the address of the chunk that was just freed. 
 
New checks in the in the back-end manager validate a chunk’s blink before linking in a free 
chunk. We saw this code above when explaining how RtlpFreeHeap() worked, but let’s review it 
again. You can see that if a FreeList’s Blink->Flink does not point to itself, it is considered 
corrupted and no link-in process is performed. 

 
Listing 39. Safe Linking 

if(InsertList->Blink->Flink == InsertList) 

{ 

 ChunkToFree->Flink = InsertList;        

 ChunkToFree->Blink = InsertList->Blink;   

 InsertList->Blink->Flink = ChunkToFree; 

 InsertList->Blink = ChunkToFree        

} 

else 

{ 

 RtlpLogHeapFailure(); 

}  

 

Comments 

 
While this device prevents the overwriting of pointers via a compromised Blink, it still presents a 
problem if the process doesn’t terminate after RtlpLogHeapFailure(). The code directly after this 
inserts the chunk into its appropriate spot in the ListHints without actually updating its flink and 
blink. This means that the flink and blink are completely user-controlled. 
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Tactics 
 

Heap Determinism 
 

For years researchers have been focused on corrupting heap meta-data to change the flow of 
execution.  This once trivial task has become much more difficult. Generic write-4-attacks are 
extinct, heap headers are now encoded with pseudo-random values to protect their integrity, 
and now even a trick as old as the FreeList insertion attack is basically dead.  
 
Now, more than ever, exploits must have a high degree of precision when attempting to setup 
advantageous situations. When talking about the heap, we call this heap manipulation. 
Command over chunk sizes, allocations and frees truly make a difference in modern Windows 
heap exploitation.  
 
In this section I will try to discuss some common scenarios that take place when attempting to 
get the heap in a deterministic state using the Low Fragmentation heap. Such as, where will 
allocation X be located? What will be adjacent allocation X? If chunk X is freed what will 
happen?  
 

Activating the LFH 

 
One of the most basic pieces of information to know is how to activate the LFH for a specific 
Bucket. The LFH is the only front-end heap manager for Windows 7 but that doesn’t mean it will 
handle every allocation for a specific chunk size by default. As shown in the code above, the LFH 
must be activated via a heuristic in the back-end. If you can force allocations to be made, which 
is quite common, then you can enable the LFH for a certain size. The LFH can be activated by 
making at least 0x12 consecutive allocations of the same size (or 0x11 if the LFH has previously 
been activated).    

 
Listing 40. Enable the LFH for a specific size 

//0x10 => Heap->CompatibilityFlags |= 0x20000000; 

//0x11 => RtlpPerformHeapMaintenance(Heap); 

//0x11 => FreeList->Blink = LFHContext + 1; 

for(i = 0; i < 0x12; i++) 

{ 

 printf("Allocation 0x%02x for 0x%02x bytes\n", i, SIZE); 

 allocb[i] = HeapAlloc(pHeap, 0x0, SIZE); 

} 

 

//now that the _HEAP_BUCKET is in the  

//ListHint->Blink, the LFH will be used 

printf("Allocation 0x%02x for 0x%02x bytes\n", i++, SIZE); 

printf("\tFirst serviced by the LFH\n"); 

allocb[i] = HeapAlloc(pHeap, 0x0, SIZE); 

 
As you can see, activating and enabling the LFH for specific sizes is quite trivial if you have the 
ability to control allocations, such as allocating DOM objects. Now that the front-end manager is 
being used for specific sizes, steps can be taken to provide greater levels of determinism. 
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Defragmentation 

 
Before we can talk about placing chunks adjacently in the LFH, the topic of fragmentation must 
be discussed. Due to the frequent allocation/de-allocation routines of most applications, the 
UserBlock chunk will be fragmented. This means some defragmentation must take place to 
ensure that a chunk that you are overflowing will be adjacent to the chunk you are overwriting.  

 
In the next example we will have a prerequisite of chunks residing directly adjacent together. 
While this is quite trivial when dealing with a new SubSegment because there aren’t any holes 
yet, this won’t be the case when using a SubSegment that has been in use.  The diagram below 
shows that a single allocation will not procure three adjacent objects. The holes must be filled 
for this to happen. The easiest way to do this is to have some understanding of the application’s 
current memory layout and make some allocations. 

 

0x08 0x0E 0x14 0x1A 0x20 0x26 0x2C 0x32

0x38 0x3E 0x44 0x4A 0x50 0x56 0x5C 0x62

Gray = BUSY

Blue = FREE

 
 
In this scenario, we only needed to make three allocations until we’ve filled all the holes, but 
obviously this isn’t a realistic example. An attacker won’t likely know exactly how many holes 
he/she will have to fill and will probably need to make enough allocations to completely exhaust 
the UserBlocks (Depth == 0x0).  This will force the heap manager to create a new SubSegment 
which will not contain any holes. (Note: Thanks Alex/Matt ).   
 

0x08 0x0E 0x14 0x1A 0x20 0x26 0x2C 0x32

0x38 0x3E 0x44 0x4A 0x50 0x56 0x5C 0x62

Gray = BUSY

Blue = FREE
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Adjacent Data 

 
One of the most difficult tasks when attempting to exploit a heap-based buffer overflow is 
manipulating the heap into a well known state. You want to ensure that the chunk you are 
overflowing is directly adjacent to the chunk to be overwritten. Normally with the back-end 
heap, coalescing can be a problem when memory is freed, leading to unreliability when 
attempting exploitation. 
 

Note: This was the most difficult task when attempting to exploit the heap overflow 
vulnerability used during the demo for Practical Windows XP/2003 Heap Exploitation. 
The multi-threaded nature of the application would unreliably coalesce chunks, 
rendering most our heap manipulation ineffective. 

  
The LFH does not coalesce chunks because they are all of the same size; hence indexed relative 
to their offset from the UserBlock. This makes placing chunks of the same size next to each 
other trivial. If an overflow is possible, BUSY and FREE chunks could be overwritten depending 
on the current state of the UserBlocks. 

 
Let’s say you want to overwrite information in alloc3 and you have a write-n situation As long as 
your allocation which can be overflowed comes before alloc3, you will be able to overwrite the 
data in alloc3. 

Listing 42. LFH Chunk overflow 
EnableLFH(SIZE); 

NormalizeLFH(SIZE); 

 

alloc1 = HeapAlloc(pHeap, 0x0, SIZE); 

 

alloc2 = HeapAlloc(pHeap, 0x0, SIZE); 

memset(alloc2, 0x42, SIZE); 

*(alloc2 + SIZE-1) = '\0'; 

 

alloc3 = HeapAlloc(pHeap, 0x0, SIZE); 

memset(alloc3, 0x43, SIZE); 

*(alloc3 + SIZE-1) = '\0'; 

 

printf("alloc2 => %s\n", alloc2); 

printf("alloc3 => %s\n", alloc3); 

 

memset(alloc1, 0x41, SIZE * 3); 

 

printf("Post overflow..\n"); 

printf("alloc2 => %s\n", alloc2); 

printf("alloc3 => %s\n", alloc3); 

 

Listing 43. LFH Chunk overflow result 
Result: 

alloc2 => BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 

alloc3 => CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

Post overflow.. 

 

alloc2 => AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

     AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCC 

     CCCCCCCCC 

alloc3 => AAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCC 
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As you can see some of the data that was present in alloc3 is now overwritten by the data 
written to alloc1. Another side effect that should be noted is the string length of alloc2 after the 
overflow occurs. The length is actually that of alloc2 and alloc3 combined since the null 
terminator was overwritten.  Please read Peter Vreugdenhil’s fantastic paper (Vreugdenhil 2010) 
for a real world example of overwriting a null terminator to help in gaining code execution. 
 
But what if alloc2 is used or has its header validated before the data in alloc3 is used? You will 
need to position the chunk that can be overflowed directly before the chunk that is being 
overflowed into. While this may seem trivial, fragmentation must be taken into account along 
with ability to control allocations and frees. 

 
Listing 44. Chunk reuse 

alloc1 = HeapAlloc(pHeap, 0x0, SIZE); 

alloc2 = HeapAlloc(pHeap, 0x0, SIZE); 

alloc3 = HeapAlloc(pHeap, 0x0, SIZE); 

 

HeapFree(pHeap, 0x0, alloc2); 

 

//overflow-able chunk just like alloc1 could reside in same position as alloc2 

alloc4 = HeapAlloc(pHeap, 0x0, SIZE); 

 

memcpy(alloc4, src, user_controlled_size) 

   
Note:  Although manipulating the heap into ordering chunks adjacently has become 
easier in the LFH, there is one huge drawback. The ability to place two chunks of 
different sizes has become much more complicated (Involving multiple SubSegments in 
adjacent memory). This can hinder the exploitation process if the ability to control 
allocation sizes is not fully controlled. 

  

 

Seeding Data 

 
At the time of writing, use-after-free bugs are very popular. Most of the exploits for these 
vulnerabilities contain code trying various allocation methods (JavaScript strings, DOM object 
instances, etc) in an attempt to seed data within the heap. Nico Waisman called this technique 
pray-after-free (Waisman 2010) due to the lack of understanding regarding object data. 
 
We already know how the LFH stores memory in large UserBlocks which are divided into 
BucketSize chunks. We also know that each one of these chunks in the UserBlock can be 
adjacent to each other depending on the ability to control allocations and frees. Using this 
knowledge the contents of each chunk can be seeded by writing data to user-writable memory 
[This is contingent on the HEAP_ZERO_MEMORY flags not being set in the call to HeapAlloc()] 
(http://msdn.microsoft.com/en-us/library/aa366597%28VS.85%29.aspx).  
 
The following example shows how memory can be copied to chunks on the LFH, subsequently 
freed, and then allocated again without losing much of the original data. 

 
  

http://msdn.microsoft.com/en-us/library/aa366597%28VS.85%29.aspx
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Listing 45. Data seeding 
EnableLFH(SIZE); 

NormalizeLFH(SIZE); 

 

for(i = 0; i < 0x10; i++) 

{ 

 printf("Allocation 0x%02x for 0x%02x bytes => ", i, SIZE); 

 allocb[i] = HeapAlloc(pHeap, 0x0, SIZE); 

 memset(allocb[i], 0x41 + i, SIZE); 

 for(j=0; j<12; j++)  

  printf("%.2X", allocb[i][j]); 

 printf("\n"); 

} 

 

printf("Freeing all chunks!\n"); 

for(i = 0; i < 0x10; i++) 

{ 

 HeapFree(pHeap, 0x0, allocb[i]); 

} 

 

printf("Allocating again\n"); 

for(i = 0; i < 0x10; i++) 

{ 

 printf("Allocation 0x%02x for 0x%02x bytes => ", i, SIZE); 

 allocb[i] = HeapAlloc(pHeap, 0x0, SIZE); 

 for(j=0; j<12; j++)  

  printf("%.2X", allocb[i][j]); 

 printf("\n"); 

} 

 

Listing 46. Data seeding results 
Result: 

Allocation 0x00 for 0x28 bytes => 41414141 41414141 41414141 

Allocation 0x01 for 0x28 bytes => 42424242 42424242 42424242 

Allocation 0x02 for 0x28 bytes => 43434343 43434343 43434343 

Allocation 0x03 for 0x28 bytes => 44444444 44444444 44444444 

Allocation 0x04 for 0x28 bytes => 45454545 45454545 45454545 

Allocation 0x05 for 0x28 bytes => 46464646 46464646 46464646 

Allocation 0x06 for 0x28 bytes => 47474747 47474747 47474747 

Allocation 0x07 for 0x28 bytes => 48484848 48484848 48484848 

Allocation 0x08 for 0x28 bytes => 49494949 49494949 49494949 

Allocation 0x09 for 0x28 bytes => 4A4A4A4A 4A4A4A4A 4A4A4A4A 

Allocation 0x0a for 0x28 bytes => 4B4B4B4B 4B4B4B4B 4B4B4B4B 

Allocation 0x0b for 0x28 bytes => 4C4C4C4C 4C4C4C4C 4C4C4C4C 

Allocation 0x0c for 0x28 bytes => 4D4D4D4D 4D4D4D4D 4D4D4D4D 

Allocation 0x0d for 0x28 bytes => 4E4E4E4E 4E4E4E4E 4E4E4E4E 

Allocation 0x0e for 0x28 bytes => 4F4F4F4F 4F4F4F4F 4F4F4F4F 

Allocation 0x0f for 0x28 bytes => 50505050 50505050 50505050 

 

Freeing all chunks! 

Allocating again 

 

Allocation 0x00 for 0x28 bytes => 56005050 50505050 50505050 

Allocation 0x01 for 0x28 bytes => 50004F4F 4F4F4F4F 4F4F4F4F 

Allocation 0x02 for 0x28 bytes => 4A004E4E 4E4E4E4E 4E4E4E4E 

Allocation 0x03 for 0x28 bytes => 44004D4D 4D4D4D4D 4D4D4D4D 

Allocation 0x04 for 0x28 bytes => 3E004C4C 4C4C4C4C 4C4C4C4C 

Allocation 0x05 for 0x28 bytes => 38004B4B 4B4B4B4B 4B4B4B4B 

Allocation 0x06 for 0x28 bytes => 32004A4A 4A4A4A4A 4A4A4A4A 

Allocation 0x07 for 0x28 bytes => 2C004949 49494949 49494949 
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Allocation 0x08 for 0x28 bytes => 26004848 48484848 48484848 

Allocation 0x09 for 0x28 bytes => 20004747 47474747 47474747 

Allocation 0x0a for 0x28 bytes => 1A004646 46464646 46464646 

Allocation 0x0b for 0x28 bytes => 14004545 45454545 45454545 

Allocation 0x0c for 0x28 bytes => 0E004444 44444444 44444444 

Allocation 0x0d for 0x28 bytes => 08004343 43434343 43434343 

Allocation 0x0e for 0x28 bytes => 02004242 42424242 42424242 

Allocation 0x0f for 0x28 bytes => 62004141 41414141 41414141 
 

Note: If all the chunks inside a HeapBin are freed, then the entire Bin itself is freed. This 
means that a full plunger effect isn’t possible like it was with the Lookaside List. Jay-Z 
suggests allocating a large amount of chunks before doing multiple frees; minimizing the 
chance of the HeapBin getting too small and subsequently freed. 

 
The first allocation printout shows the memory written to each chunk in the LFH for size 0x28 
(0x30 after adding space for the _HEAP_ENTRY). All the chunks are freed and then allocated in 
the same fashion in step 1. Although this time you don’t see a call to memset, the data in the 
chunks is strikingly similar.  
 
This is because none of the chunks were coalesced nor was the data cleared from them. The 
only piece of information that seems to have changed is the first 2 bytes of the data. This is the 
saved FreeEntryOffset that was talked about in the Algorithms section. The FreeEntryOffset is 
saved in the 2 bytes directly following the chunk header for future use by the heap manager.  
 
It should also be noted that the chunks are in reverse order from when they were originally 
pieced out of the UserBlock. It’s not that the memory actually inverted itself but only that the 
FreeEntryOffset was re-indexed after every HeapFree(). So what can you accomplish by 
knowing the size of an allocation and stale data? Use-after-free vulnerabilities are a perfect 
candidate for leveraging the ability to make allocations of a known size. 
 
Let’s assume that an object has a size of 0x30 bytes and has a vtable at offset 0x0. This object is 
used, garbage collected and then incorrectly used after the memory has been freed. This leaves 
the opportunity for overwriting of the data before it is used after the free; giving the attacker 
control (or semi-control) of what address is used as the vtable. 
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Since the size is known and we can control an allocation before the free object is used, this will 
give us complete control over what address is used for the object’s vtable. Having control over 
this will give us the ability to change the flow of execution to our supplied address and 
corresponding payload. 

 
Listing 47. Use-after-free contrived example (Sotoriv 2007) 

//LFH is enabled 

 

//0x30 byte object 

var obj = new FakeObj(); 

 

//. 

//. 

//. 

//obj goes out of scope & garbage collected 

//. 

//. 

//. 

 

var heap = new heapLib.ie(); 

 

//this will allocate the same location 

//in memeory as obj 

heap.alloc("A" * 0x30, "overwrite"); 

 

//vtable == 0x41414141 

obj.DoStuff(); 

 
Note: Although this is a simplistic example, it still shows how knowledge of the heap 
manager can result in more precise exploitation. If you are reading this paper before 
Blackhat USA 2010 I HIGHLY recommend attending Nico Waisman’s talk, Aleatory 
Persistent Threat. If not please take some time to read his paper of the same title. This 
will provide practical applications of the topics discussed in this paper. </nico_plug> 
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Exploitation 
 

Numerous protection mechanisms have been created since the popularity of heap exploitation 
became prevalent, from safe-unlinking to encoded chunk headers; heap exploitation has 
continued to increase in difficulty. Meta-data corruption now is generally used to overwrite 
application data that resides in the heap, rather than directly using the corruption to achieve 
code execution. That being said, it should not be considered impossible; meta-data corruption 
can still be used to gain code execution, albeit difficult.  
 
In this section I will discuss previously detailed techniques along with some new techniques for 
exploiting heap meta-data. While this meta-data corruption doesn’t get an easy write-4, it will 
show how to manipulate data to achieve code execution, provided a few prerequisites are met.  

 

Ben Hawkes #1 

 
Ben Hawkes’ RuxCon 2008 paper (Hawkes 2008) not only gave a great overview of Windows 
Vista managed memory, but also came up with new techniques for leveraging code execution 
through heap corruption. I recommend reading this paper as prerequisite / supplementary 
reading for this paper; specifically this section. While he came up with numerous techniques, 
most impressively his Heap HANDLE payload, I will only discuss one technique in this paper.  
 
Dr. Hawkes specifically talks about corrupting chunks in the UserBlock managed by the LFH. 
When freeing a chunk in RtlpLowFragHeapFree() it checks to see if the _HEAP_ENTRY has a 
UnusedBytes (offset 0x7) equal to 0x5. If that is the case the function will use the 
SegmentOffset (offset 0x6) as an index to a different chunk header. 

 
Listing 48. Chunk header relocation 

_HEAP_ENTRY *ChunkHeader = ChunkToFree - sizeof(_HEAP_ENTRY); 

if(ChunkHeader->UnusedBytes == 0x5) 

 ChunkHeader -= 8 * (BYTE)ChunkHeader->SegmentOffset; 

 
A normal chunk on the LFH will have a header that looks like this: 

 

Flags ChecksumSize Prev Size UnusedBytesSeg Offset

0 2 3 4 6 7

Data = Size * 8 BytesNextOffset

 
Diagram 14. HeapBin chunk 

 
Note: The ‘NextOffset’ isn’t actually a separate field but it resides in the first 2-bytes of 
the user-writeable data. 
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If you can place an overflow-able chunk directly before the chunk to be freed, the UnusedBytes 
can be assigned a value of 0x5 and the SegOffset can be a 1-byte value of your choosing. This 
gives you 0xFF * 8 bytes of negative direction to choose from.  
 

XX XXXXXX XXXX 0x050x00 – 0xFF

Data = Size * 8 BytesNext Free Chunk Offset

Overflow-able chunk

Overflow direction

 Diagram 15. Overwritten HeapBin chunk 
 
The ChunkHeader will be reassigned a value based on the overwritten SegOffset, but must be a 
valid _HEAP_ENTRY, since RtlpLowFragHeapFree() must free it. This may seem useless at first 
but let’s look at a code sample.  
 
This highly simplistic, contrived example (ignore scope) takes input from a source and attempts 
to create objects and allocate memory for future use. There is a trivial buffer overflow due to a 
miscalculation in the amount of memory to read. I will show you how this overflow can lead to 
the overwriting of application data.  

 
Listing 49. C++ contrived example 

class Paser  

{ 

public:  

 Parser(); 

 virtual void DoThings(); 

 ~Parser(); 

 

private: 

 int Items; 

 int Values; 

 int Stuff; 

 int Things; 

}; 

 

 

void *buffer, *output; 

int action, copy_size = 0x40; 

Parser *p; 

 

while(1) 

{ 

 action = ReadInt(); 

 

  

if(action == 0x1) 

  p = new Parser(); 
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else if(action == 0x2) 

  buffer = malloc(sizeof(Parser)); 

 else if(action == 0xFF) 

  break; 

 

 action = ReadInt(); 

 if(action == 0x3) 

  p.DoThings(); 

 else if(action == 0x4) 

  ReadBytes(buffer, copy_size); 

 else if(action == 0x5) 

  free(buffer); 

 else if(action == 0x6) 

  delete p; 

 else if(action == 0x7) 

  ReadBytes(buffer, 0x10); 

} 

 
The first order of business is to enable the LFH for sizeof(Parser); then set up memory so that a 
Parser object is located behind an allocation which you can overflow. Another allocation must 
be made, so that the overflowed chunk headers do not get reassigned in 
RtlpLowFragHeapAllocFromContext() after an allocation. This will permit the overwriting an 
adjacent header with user controlled values.  
 

Parser object Alloc1 Alloc2

 Diagram 16. Chunk setup 
 
After overwriting the header in Alloc2 with values that will adjust the chunk header to point to 
the parser object, we then free Alloc2, which will actually make the memory location of the 
parser object the next available chunk.  
 

Parser object Alloc1 Data

After overwrite & free()

 Diagram 17. Chunk overwrite and free 
 
Now our next allocation will be given the address of the parser object, which after overwriting 
the vtable, will be under our control. This requires a third allocation and then a call to 
p.DoThings(). 
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Step-by-Step 

 
1. Enable the LFH for sizeof(Parser) 
2. Allocate a Parser object 
3. Allocate a chunk of memory which can be overflowed (Alloc1) 
4. Allocate a chunk of memory to be overwritten (Alloc2) 
5. Overflow from Alloc1 into Alloc2 overwriting the chunk header with UnusedBytes equal to 

0x5 and the SegOffset equal to the amount of blocks to point to the parser object 
6. Free Alloc2 
7. Allocate a chunk of memory and write your desired contents. In this scenario you will be 

overwriting a pointer to the parser object’s vtable (Alloc3) 
8. Trigger a call to the parser object (p.DoThings() for example) 

 

Prerequisites 

 

 Control over allocations of a certain size 

 Ability to enable the LFH for specific size  

 Place a legitimate LFH chunk before the chunk that is overflowed 

 Overflow at least 8-bytes, altering the chunk header of an adjacent piece of memory 

 Ability to free overwritten chunks  
 

Methodology 

 
1. Enable LFH 
2. Normalize the heap 
3. Alloc1 
4. Alloc2 
5. Alloc3 
6. Overwrite Alloc3 (At least 8-btyes) 
7. Free Alloc3 (Adjust header to point to Alloc1) 
8. Alloc4 (Actually points to Alloc1) 
9. Write data (Tainting memory in Alloc1) 
10. Use Alloc1 
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FreeEntryOffset Overwrite 

 
This section starts the new techniques devised while doing the research for this paper. In the 
previous section we talked about how the chunks in the UserBlock are managed by keeping 
track of the current offset and the offset of the next available chunk. The current offset is held 
in an _INTERLOCK_SEQ structure. This way, the LFH knows where to get the next free chunk.  
 
The main problem with this is the next FreeEntryOffset is stored in the first 2 bytes of user-
writable data. This means the allocator must acquire a value based off the size of the chunk 
being managed; subsequently storing it for the next iteration.  Since each chunk in the LFH can 
be directly adjacent to one another and the chunk headers aren’t verified on allocations, the 
FreeEntryOffset can be overwritten with a new Offset; making later allocations point to semi-
arbitrary locations.  

 
Listing 50. Try/Catch for LFH allocation 

try 

{ 

 //the next offset is stored in the 1st 2-bytes of userdata  

 short NextOffset =  

  UserBlocks + BlockOffset + sizeof(_HEAP_ENTRY)); 

 

 _INTERLOCK_SEQ AggrExchg_New; 

 AggrExchg_New.Offset = NextOffset; 

} 

catch 

{ 

 return 0; 

} 

 
With this knowledge and at least a 0x9 (0xA preferred) byte overwrite, you can influence the 
value of NextOffset, affecting an allocation made directly afterwards. Let’s see a half-rate 
example. 

 
Listing 51. FreeEntryOffset ovewrite example 

class Dollar  

{ 

public:  

 Dollar(); 

 virtual void INeedDollar(); 

 

private: 

 int Job = 0; 

 int Dollars = 0; 

 unsigned int Booze = 0xFFFFFFFF 

}; 

 

int first_len, second_len, total_len; 

char *dollar1, *dollar2, *dollar3, *data1, *data2; 

char *statement = "I need dollar"; 

 

first_len = ReadInt(); 

second_len = ReadInt(); 

 

data = alloc(first_len); 

ReadBytes(data, first_len); 
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//int wrap 

total_len = first_len + second_len; 

 

//we can write more data than this  

//allocation can hold 

dollar1 = alloc(total_len); 

memcpy(dollar1, data, first_len); 

 

//this will store the tainted FreeEntryOffset 

//in the _INTERLOCK_SEQ 

dollar2 = alloc(total_len); 

memcpy(dollar2, statement, strlen(statement)); 

 

//although not on the same UserBlock, it will be 

//allocated on an adjacent page in memory  

Dollar dollars[0x20]; 

for(i = 0; i < 0x20; i++) 

{ 

 dollars[i] = new Dollar(); 

} 

 

//this will give us 0xFFFF * 0x8 bytes of 

//forward range when making an allocation, more  

//than enough room to overwrite any of the Dollar objects 

dollar3 = alloc(first_len); 

memcpy(dollar3, data, first_len); 

 

//one or more of these can be overwritten 

//with data copied into dollar3 

for(i = 0; i < 0x20; i++) 

{ 

 dollars[i].INeedDollar(); 

} 

 
There is an obviously integer wrap followed by a potential buffer overflow at the very beginning 
of this simple function, but contrary to previous exploitation methods, we cannot simply 
overwrite some meta data and gain code execution. But, by overwriting the FreeEntryOffset 
stored in the data of dollar2 we can control the address returned for dollar3. 
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Let’s assume that the LFH is enabled for Bucket[0x6] (0x30 bytes) and also assume that dollar1 
is the first chunk to be allocated for Bucket*0x6+ (This is just for simplicity’s sake. It does not 
actually need to be the first allocation from the LFH for a specific size). The state of the 
UserBlock should look like this: 
 

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0008 NextOffset = 0x000E NextOffset = 0x0014 NextOffset = 0x001A

... ... ...
NextOffset = 0xFFFF

(Last Entry)

Memory Pages

+0x02 +0x08 +0x0E +0x14

FreeEntryOffset = 0x0002

Diagram 18. Userblock after chunking 
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After dollar1 is allocated and a subsequently overflowed into the next free heap chunk, the 
FreeEntryOffset is updated to the offset of the next chunk (which is 0x0008).  
 

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x1501 NextOffset = 0x0014 NextOffset = 0x001A

... ... ...
NextOffset = 0xFFFF

(Last Entry)

Memory Pages

+0x08 +0x0E +0x14

FreeEntryOffset = 0x0008

Diagram 19. FreeEntryOffset Overwrite 
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At this point the next offset has been overwritten with a value that we control, but to use this 
offset you will need to invoke another allocation; storing the value in the _INTERLOCK_SEQ for 
future use. This allocation, in this example, occurs when allocating memory for dollar2. 
 

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0014 NextOffset = 0x001A

... ... ...
NextOffset = 0xFFFF

(Last Entry)

Memory Pages

+0x0E +0x14

FreeEntryOffset = 0x1501

Diagram 20. Second allocation, setting overwritten FreeEntryOffset 
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Now we have a FreeEntryOffset of 0x1501. This value will write off the page allocated for this 
UserBlock, so adjacent memory is required for overwriting. (This is not always the case. If there 
is data perfect for an overwrite in this memory page, then the overwritten offset can be any 
value from 0x0000-0xFFFF).  
 
The adjacent memory in this example is created when constructing the array of 0x20 Dollar 
objects (we will assume these are 0x40 bytes wide). Once the LFH is enabled for Bucket[0x8] 
(0x40 bytes), you will have an overall memory layout that looks similar to the following: 
 

UserBlock @ 0x5162000 for Size 0x40

Memory Pages

NextOffset = 0x000A NextOffset = 0x0012 NextOffset = 0x001A NextOffset = 0x0022

... ... ...
NextOffset = 0xFFFF

(Last Entry)

FreeEntryOffset = 0x0002

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0014 NextOffset = 0x001A

... ... ...
NextOffset = 0xFFFF

(Last Entry)

+0x0E +0x14

FreeEntryOffset = 0x1501

+0x02 +0x0A +0x12 +0x1A

Diagram 21. Multiple UserBlocks 
 
At this point there is a very advantageous situation for overwriting function pointers / vtables. 
The next allocation for 0x30 bytes will return the memory address 0x5162006, due to the next 
free entry being calculated by taking the address of the current UserBlock [0x5157800], adding 
the current offset into the UserBlocks [0x0E] (which is 2 entries of 0x6 blocks into the chunk), 
and finally adding the FreeEntryOffset * 8 [0x1501].  
 
 NextChunk = UserBlock + Depth_IntoUserBlock + (FreeEntryOffset * 8) 
 NextChunk = 0x5157800 + 0x0E + (0x1501 * 8) 
 NextChunk = 0x5162016 
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This means once we allocate dollar3 and write 0x30 bytes of data, we will overwrite an object in 
the Dollar array. The overwritten offset can even be tuned to point to a specific object within 
the array. Although this example is simplistic and attacks application data in the heap, it can still 
be used in varying ways to have n-byte overwrites.  
 

UserBlock @ 0x5162000 for Size 0x40

Memory Pages

XXXX NextOffset = 0x0012 NextOffset = 0x001A NextOffset = 0x0022

... ... ...
NextOffset = 0xFFFF

(Last Entry)

FreeEntryOffset = 0x0002

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0014 NextOffset = 0x001A

... ... ...
NextOffset = 0xFFFF

(Last Entry)

+0x0E +0x14

FreeEntryOffset = 0x1501

+0x02 +0x0A +0x12 +0x1A

Diagram 22. Cross page overwrite 
 

Step-by-Step 

 
1. Enable the LFH 
2. Allocate a chunk for the size you have enabled (dollar1) 
3. Overflow dollar1 by at least 0x9 bytes (0xA is preferable) into a directly adjacent free chunk, 

which is to be allocated next 
4. Allocate a chunk for the size you enabled (dollar2) [This will store the overwritten 

FreeEntryOffset in the _INTERLOCK_SEQ] 
5. Allocate an object which is to be overwritten. This allocation needs to reside within the 

range available to the FreeEntryOffset (0x08 * 0xFFFF is the max). In this case, the Dollar 
objects are in an adjacent memory page. 

6. Allocate a chunk for the size you enabled (dollar3) [This will return the address of your 
choosing based off the overwritten FreeEntryOffset] 

7. Write n-bytes, overwriting an important object 
8. Call overwritten function pointer / vtable 
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Prerequisites 

 

 Ability to enable the LFH for a specific Bucket  

 Control over allocations for a specific Bucket  

 At least a 0x9 byte overwrite, 0xA is preferable 

 An adjacent free block to overwrite 

 An object to overwrite within the maximum range (0xFFFF * 0x8) 

 A way to trigger the overwritten object 
 

Methodology 

 
1. Enable LFH 
2. Normalize the heap 
3. Alloc 1 
4. Overwrite adjacent chunk’s FreeEntryOffset 
5. Alloc2 
6. Alloc3 
7. Write data to Alloc3 (Overwriting object of interest) 
8. Trigger 
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Observations 
 
Although the material presented in this section could very easily be put into the Exploitation 
section, I felt that it would be better placed under Observations. The reasoning behind this is the 
lack of reliability when attempting to use this technique to leverage code execution. The last 
thing I wanted to do was place an item of interest into the Exploitation section when it was in 
fact, as Sinan Erin would put it, strawberry pudding. 

 

SubSegment Overwrite 

 
We saw in the Allocation section that the LFH will attempt to use a SubSegment when allocating 
memory. If there is no SubSegment available, it will allocate space for a UserBlock and then 
proceed to procure a SubSegment. 

 
Listing 52. SubSegment acquisition 

_HEAP_SUBSEGMENT *SubSeg = HeapLocalSegmentInfo->ActiveSubsegment; 

 

if(SubSeg) 

{ 

 while(1) 

 { 

  . 

  . 

  . 

  //checks to ensure valid subsegment 

  _HEAP_USERDATA_HEADER *UserBlocks =  

   SubSeg->UserBlocks; 

  if(!Depth ||  

   !UserBlocks ||  

   SubSeg->LocalInfo != HeapLocalSegmentInfo) 

  { 

   break; 

  } 

  . 

  . 

  . 

 } 

} 

 

 

. 

. 

.  

 

_HEAP_USERDATA_HEADER *UserData =  

 RtlpAllocateUserBlock(lfh, UserBlockCacheIndex, BucketByteSize + 8); 

 

DeletedSubSegment = ExInterlockedPopEntrySList(HeapLocalData); 

if (DeletedSubSegment) 

{ 

 // if there are any deleted subsegments, use them 

 NewSubSegment = (_HEAP_SUBSEGMENT *)(DeletedSubSegment - 0x18); 

} 
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else 

{ 

 _HEAP_SUBSEGMENT *NewSubSegment =  

  RtlpLowFragHeapAllocateFromZone(LFH, LocalDataIndex); 

  

 //return failure use back-end 

 if(!NewSubSegment) 

  return 0; 

} 

 

//this function will setup the _HEAP_SUBEMENT structure  

//and chunk out the data in 'UserData' to be of HeapBucket->SizeIndex chunks 

RtlpSubSegmentInitialize(LFH,  

 NewSubSegment, 

 UserBlock, 

 RtlpBucketBlockSizes[HeapBucket->SizeIndex], 

 UserDataAllocSize,HeapBucket); 

 

. 

.  

. 
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This flow of execution usually occurs when a _HEAP_SUBSEGMENT is not setup (i.e. the first 
allocation from the LFH for a certain Bucket) or if all the SubSegments have been used. This 
situation will give you a memory layout that looks like the following. 
 

UserBlock @ 0x15B398

LFH Block Zone @ 0x15BB98

SubSegment @ 

0x15BBA8

SubSegment @ 

0x15BBC8

SubSegment @ 

0x15BBE8

SubSegment @ 0x15BC08 …….

chunk chunk chunk chunk

chunk chunk chunk chunk

Contiguous Memory

 Diagram 23. UserBlock residing before SubSegment pointers in memory 
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As you can see, if you place the UserBlock chunk before the memory that is allocated for the 
SubSegments, then an overflow can overwrite pointers used by the _HEAP_SUBSEGMENT 
structures. Although Richard Johnson theorized that the FreePointer in the _LFH_BLOCK_ZONE 
could be compromised to write a _HEAP_SUBSEGMENT structure to a semi-arbitrary location 
(Johnson 2006), I have a different idea. You could overwrite the SubSegment, including the 
UserBlock pointer. Then proceed to make a subsequent allocation, giving you a write-n situation 
with a user supplied pointer.  
 

UserBlock @ 0x15B398

LFH Block Zone @ 0x15BB98

SubSegment @ 

0x15BBA8

SubSegment @ 

0x15BBC8

SubSegment @ 

0x15BBE8

SubSegment @ 0x15BC08 …….

chunk chunk chunk chunk

chunk chunk chunk chunk

Contiguous Memory

 Diagram 24. Overwrite into _HEAP_SUBSEGMENT 
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Example 

 
The following example shows how a LFH Bin can be enabled for a certain size, then a 
subsequent allocation can overwrite the _HEAP_SUBSEGMENT, resulting in tainted values used 
for later allocations. Note that the overwrite size of 0x200 isn’t a specific value, but just used to 
show that all the _LFH_BLOCK_ZONE items can be overwritten.  

 
Listing 53. SubSegment overwrite 

//turn on the LFH  

for(i = 0; i < 0x12; i++) 

 allocb[i] = HeapAlloc(pHeap, 0x0, SIZE); 

 

//first allocation for SIZE in LFH 

alloc1 = HeapAlloc(pHeap, 0x0, SIZE); 

 

//get closer in virtual memory 

//to make overwrite easier 

for(i = 0; i < 0x27; i++) 

 alloc2 = HeapAlloc(pHeap, 0x0, SIZE); 

 

//overwrite the UserBlocks pointer for this SubSegment 

alloc3 = HeapAlloc(pHeap, 0x0, SIZE); 

memset(alloc3, 0x41, 0x200); 

 

//this allocation will use the tainted UserBlocks 

alloc4 = HeapAlloc(pHeap, 0x0, SIZE); 

 

Issues 

 
There are two major hurdles holding this technique back. The first revolves around the ability, or 
lack thereof, to manipulate the heap in a certain way. As you saw from the example, a 
UserBlock chunk would need to be allocated before the memory used to store the SubSegment 
pointers (_LFH_BLOCK_ZONEs). While enabling a LFH Bin is trivial, ensuring that it resides in 
contiguous memory before the chunk used for SubSegment pointers will be much more difficult 
in a real world scenario. One just needs to take a look at Internet Explorer to see just how 
difficult a task this may be.  
 
The second task is avoiding a check done in the allocation routine to guarantee SubSegment 
integrity. It will ensure that the _HEAP_LOCAL_SEGMENT_INFO structure for the requested size, 
matches that currently stored in the _HEAP_SUBSEGMENT.  
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Listing 54. SubSegment validation 
_HEAP_LOCAL_SEGMENT_INFO *HeapLocalSegmentInfo =  

 HeapLocalData->SegmentInfo[HeapBucket->SizeIndex]; 

 

_HEAP_SUBSEGMENT *SubSeg = HeapLocalSegmentInfo->ActiveSubsegment; 

 

. 

. 

 

if(!Depth ||  

 !UserBlocks ||  

 SubSeg->LocalInfo != HeapLocalSegmentInfo) 

{ 

 break; 

} 

 
While the Depth and UserBlocks conditions are easily spoofed, the check ensuring that 
LocalInfo structure is the same pointer as the one stored in the Low Fragmentation heap is a bit 
more complicated. Using a leaked chunk address is one possible solution to this problem, but 
the longer an application runs, the harder it will be to reliably predict an address. The easiest 
way would be to acquire the address of the FrontEndHeap pointer from the HeapBase. This 
would provide you with a pointer to a _LFH_HEAP structure then the address of the appropriate 
_HEAP_LOCAL_SEGMENT_INFO item could be inferred by the size of requested chunk. 
 
Overall this technique provides a very easy write-n situation relying purely on heap meta-data 
and an address to overwrite. Unfortunately, at the time of this writing, a reliable technique has 
yet to be discovered. This does not mean it’s impossible, it just means that I gave up because I 
am a huge failure.  
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Conclusion 
 

Many aspects of Windows memory management have changed since the Windows XP code 
base. A vast majority of these changes occurred with the inception of Windows Vista and were 
carried over to Windows 7.  
 
The data structures used are far more complex, providing better support for frequent memory 
requests via multiple threads, but also hold some familiarity due to similar usage to that of past 
heap implementations.  
 
These new data structures are used in a different fashion than before. The concept of Dedicated 
FreeLists was quickly retired for more robust techniques. These new techniques provided means 
for the back-end manager to enable the front-end manager, which now only support the Low 
Fragmentation heap; as the Lookaside List has been sent out to pasture.  A new structure 
referred to as the UserBlock now holds all chunks for a HeapBucket in one large continuous 
piece of memory after certain thresholds are met. This provides more efficient access to 
memory for frequent allocation and frees.  
 
Although there were many security mechanisms added, such as encoded header, anti-bitmap 
flipping and safe linking, there were born some scenarios that could actually make heap 
manipulation more reliable. Now that memory of the same size can reside directly next to each 
other, overwrites can be more predictable and data seeding can be procured with simple 
control of allocations and frees.  
 
With all the newly created data structures and algorithms came new complexity. This 
complexity, as Ben Hawkes has shown previously and I in this paper can be used to control the 
flow of execution. The new offsets and pointers can be used in simple overflow scenarios to 
alter the state of the heap and provide better means of reliable execution.  
 
Finally, although meta-data overwrites can lead to a change in execution flow, they are not as 
useful as they once were. Heap exploitation has become increasingly complex and as time goes 
on, the ability to understand what you are allocating/freeing and where it resides has become 
far more important than what you are overwriting (not to mention subverting DEP and ASLR). It 
may seem unnecessary to discuss both the front and back-end managers in such depth, but to 
competently manipulate the heap you must understand exactly how it works.  
 
- Chris Valasek 2010 

o @nudehaberdasher 
o cvalasek@gmail.com  
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