
© 2009 IBM Corporation

Understanding the Low Fragmentation Heap

Chris Valasek, Researcher, X-Force Advanced R&D

cvalasek@gmail.com / @nudehaberdasher

Blackhat USA 2010

mailto:cvalasek@gmail.com

© 2009 IBM Corporation

Introduction

“What. Are. You……?”

© 2010 IBM Corporation

Introduction

• Much has changed since Windows XP

• Data structures have been added and altered

• Memory management is now a bit more complex

• New security measures are in place to prevent meta-data corruption

• Heap determinism is worth more than it used to be

• Meta-data corruption isn’t entirely dead

© 2010 IBM Corporation

The Beer List

• Core data structures
• _HEAP

•_LFH_HEAP

•_HEAP_LIST_LOOKUP

• Architecture

• FreeLists

• Core Algorithms

• Back-end allocation (RtlpAllocateHeap)

• Front-end allocation (RtlpLowFragHeapAllocFromContext)

• Back-end de-allocation (RtlpFreeHeap)

• Front-end de-allocation (RtlpLowFragHeapFree)

• Tactics

• Heap determinism

• LFH specific heap manipulation

• Exploitation

• Ben Hawkes #1

• FreeEntry Offset

• Observations

© 2010 IBM Corporation

Prerequisites

• All pseudo-code and data structures are taken from Windows 7 ntdll.dll

version 6.1.7600.16385 (32-bit)

• Yikes! I think there is a new one…

• Block/Blocks = 8-bytes

• Chunk = contiguous piece of memory measured in blocks or bytes

• HeapBase = _HEAP pointer

• LFH = Low Fragmentation Heap

• BlocksIndex = _HEAP_LIST_LOOKUP structure

• 1st BlocksIndex manages chunks from 8 to 1024 bytes

• ListHint[0x7F] = Chunks >= 0x7F blocks

• 2nd BlocksIndex managages chunks from 1024 bytes to 16k bytes

• ListHint[0x77F] = Chunks >= 0x7FF blocks

• Bucket/HeapBucket = _HEAP_BUCKET structure used as size/offset reference

• HeapBin/UserBlocks = Actually memory the LFH uses to fulfill requests

© 2009 IBM Corporation

Core Data Structures

“Ntdll changed, surprisingly I didn’t quit”

© 2010 IBM Corporation

_HEAP
(HeapBase)

 EncodeFlagMask – A value that is used to determine if a heap chunk header is encoded.
This value is initially set to 0x100000 by RtlpCreateHeapEncoding() in RtlCreateHeap().

 Encoding – Used in an XOR operation to encode the chunk headers, preventing
predictable meta-data corruption.

 BlocksIndex – This is a _HEAP_LIST_LOOKUP structure that is used for a variety of
purposes. Due to its importance, it will be discussed in greater detail in the next slide.

 FreeLists – A special linked-list that contains pointers to ALL of the free chunks for this
heap. It can almost be thought of as a heap cache, but for chunks of every size (and no
single associated bitmap).

 FrontEndHeapType – An integer is initially set to 0x0, and is subsequently assigned a
value of 0x2, indicating the use of a LFH. Note: Windows 7 does not actually have
support for using Lookaside Lists.

 FrontEndHeap – A pointer to the associated front-end heap. This will either be NULL or
a pointer to a _LFH_HEAP structure when running under Windows 7.

© 2010 IBM Corporation

_HEAP_LIST_LOOKUP
(HeapBase->BlocksIndex)

 ExtendedLookup - A pointer to the next _HEAP_LIST_LOOKUP structure. The value is
NULL if there is no ExtendedLookup.

 ArraySize – The highest block size that this structure will track, otherwise storing it in a
special ListHint. The only two sizes that Windows 7 currently uses are 0x80 and 0x800.

 OutOfRangeItems – This 4-byte value counts the number items in the FreeList[0]-like
structure. Each _HEAP_LIST_LOOKUP tracks free chunks larger than ArraySize-1 in
ListHint[ArraySize-BaseIndex-1].

 BaseIndex – Used to find the relative offset into the ListHints array, since each
_HEAP_LIST_LOOKUP is designated for a certain size. For example, the BaseIndex for 1st
BlocksIndex would be 0x0 because it manages lists for chunks from 0x0 – 0x80, while
the 2nd BlocksIndex would have a BaseIndex of 0x80.

 ListHead – This points to the same location as HeapBase->FreeLists, which is a linked list
of all the free chunks available to a heap.

 ListsInUseUlong – Formally known as the FreeListInUseBitmap, this 4-byte integer is an
optimization used to determine which ListHints have available chunks.

 ListHints – Also known as FreeLists, these linked lists provide pointers to free chunks of
memory, while also serving another purpose. If the LFH is enabled for a given Bucket
size, then the blink of a specifically sized ListHint/FreeList will contain the address of a
_HEAP_BUCKET + 1.

© 2010 IBM Corporation

_LFH_BLOCK_ZONE
(HeapBase->FrontEndHeap->LocalData->CrtZone)

 ListEntry – A linked list of _LFH_BLOCK_ZONE structures.

 FreePointer – This will hold a pointer to memory that can be used by a
_HEAP_SUBSEGMENT.

 Limit – The last _LFH_BLOCK_ZONE structure in the list. When this value is reached or

exceeded, the back-end heap will be used to create more _LFH_BLOCK_ZONE

structures.

© 2010 IBM Corporation

_LFH_HEAP
(HeapBase->FrontEndHeap)

 Heap – A pointer to the parent heap of this LFH.

 Buckets – An array of 0x4 byte data structures that are used for the sole purpose of
keeping track of indices and sizes. This is why the term Bin will be used to describe the
area of memory used to fulfill request for a certain Bucket size.

 LocalData – This is a pointer to a large data structure which holds information about
each SubSegment. See _HEAP_LOCAL_DATA for more information.

© 2010 IBM Corporation

_HEAP_LOCAL_DATA
(HeapBase->FrontEndHeap->LocalData)

 LowFragHeap – The Low Fragmentation heap associated with this structure.

 SegmentInfo – An array of _HEAP_LOCAL_SEGMENT_INFO structures representing all

available sizes for this LFH. This structure type will be discussed in later sections.

© 2010 IBM Corporation

_HEAP_LOCAL_SEGMENT_INFO
(HeapBase->FrontEndHeap->LocalData->SegmentInfo[])

 Hint – This SubSegment is only set when the LFH frees a chunk which it is managing. If a
chunk is never freed, this value will always be NULL.

 ActiveSubsegment – The SubSegment used for most memory requests. While initially
NULL, it is set on the first allocation for a specific size.

 LocalData – The _HEAP_LOCAL_DATA structure associated with this structure.

 BucketIndex – Each SegmentInfo object is related to a certain Bucket size (or Index).

© 2010 IBM Corporation

_HEAP_SUBSEGMENT
(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]->Hint,ActiveSubsegment,CachedItems)

 LocalInfo – The _HEAP_LOCAL_SEGMENT_INFO structure associated with this structure.

 UserBlocks – A _HEAP_USERDATA_HEADER structure coupled with this SubSegment
which holds a large chunk of memory split into n-number of chunks.

 AggregateExchg – An _INTERLOCK_SEQ structure used to keep track of the current
Offset and Depth.

 SizeIndex – The _HEAP_BUCKET SizeIndex for this SubSegment.

© 2010 IBM Corporation

_HEAP_USERDATA_HEADER
(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]->Hint,ActiveSubsegment,CachedItems->UserBlocks)

© 2010 IBM Corporation

_INTERLOCK_SEQ
(HeapBase->FrontEndHeap->LocalData->SegmentInfo[]->Hint,ActiveSubsegment,CachedItems->AggregateExchg)

 Depth – A counter that keeps track of how many chunks are left in a UserBlock. This
number is incremented on a free and decremented on an allocation. Its value is
initialized to the size of UserBlock divided by the HeapBucket size.

 FreeEntryOffset – This 2-byte integer holds a value, when added to the address of the
_HEAP_USERDATA_HEADER, results in a pointer to the next location for freeing or
allocating memory. This value is represented in blocks (0x8 byte chunks) and is
initialized to 0x2, as sizeof(_HEAP_USERDATA_HEADER) is 0x10. [0x2 * 0x8 == 0x10].

 OffsetAndDepth – Since both Depth and FreeEntryOffset are 2-bytes, are combined
into this single 4-byte value.

© 2010 IBM Corporation

_HEAP_ENTRY
(Chunk Header)

 Size – The size, in blocks, of the chunk. This includes the _HEAP_ENTRY itself

 Flags – Flags denoting the state of this heap chunk. Some examples are FREE or BUSY

 SmallTagIndex – This value will hold the XOR’ed checksum of the first three bytes of the
_HEAP_ENTRY

 UnusedBytes/ExtendedBlockSignature – A value used to hold the unused bytes or a

byte indicating the state of the chunk being managed by the LFH.

© 2010 IBM Corporation

Overview

© 2009 IBM Corporation

Architecture

“The winner of the BIG award is…”

© 2010 IBM Corporation

WinXP FreeLists

Once upon a time there were dedicated FreeLists which were terminated

with pointers to sentinel nodes. Empty lists would contain a Flink and Blink

pointing to itself.

NonDedicatedListLength

LargeBlocksIndex

PseudoTagEntries

FreeList[0].Blink

FreeList[0].FLink

FreeList[1].FLink

FreeList[1].BLink

FreeList[2].FLink

FreeList[2].BLink

0x16c

0x170

0x174

Heap Base

0x178

0x17c

0x180

0x184

0x188

0x18c

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

© 2010 IBM Corporation

Win7 FreeLists

• The concept of dedicated FreeLists have gone away. FreeList or ListHints will

point to a location within Heap->FreeLists.

• They Terminate by pointing to &HeapBase->FreeLists. Empty lists will be NULL or

contain information used by the LFH.

• Only Heap->FreeLists initialized to have Flink/Blink pointing to itself.

• Chunks >= ArraySize-1 will be tracked in BlocksIndex->ListHints[ArraySize-

BaseIndex-1]

• If the LFH is enabled for a specific Bucket then the ListHint->Blink will contain the

address of a _HEAP_BUCKET + 1. Otherwise,

ListHint->Blink can contain a counter used to enable the LFH for that specific

_HEAP_BUCKET.

• LFH can manage chunks from 8-16k bytes.

• FreeLists can track 16k+ byte chunks, but will not use the LFH.

© 2010 IBM Corporation

Win7 FreeLists

© 2010 IBM Corporation

Circular Organization of Chunk Headers (COCHs)

© 2009 IBM Corporation

Algorithms: Allocation

“@hzon Do you remember any of the stuff we did last year?”

© 2010 IBM Corporation

Allocation

if(Size == 0x0)

 Size = 0x1;

//ensure that this number is 8-byte aligned

int RoundSize = Round(Size);

int BlockSize = Size / 8;

//get the HeapListLookup, which determines if we should use the LFH

_HEAP_LIST_LOOKUP *BlocksIndex = (_HEAP_LIST_LOOKUP*)heap->BlocksIndex;

//loop through the HeapListLookup structures to determine which one to use

while(BlocksSize >= BlocksIndex->ArraySize)

{

 if(BlocksIndex->ExtendedLookup == NULL)

 {

 BlocksSize = BlocksIndex->ArraySize - 1;

 break;

 }

 BlocksIndex = BlocksIndex->ExtendedLookup;

}

* The above searching now will be referred to as: BlocksIndexSearch()

• RtlAllocateHeap: Part I
• It will round the size to be 8-byte aligned then find the appropriate BlocksIndex

structure to service this request. Using the FreeList[0] like structure if it cannot

service the request.

© 2010 IBM Corporation

Allocation

• RtlAllocateHeap: Part II
• The ListHints will now be queried look for an optimal entry point into the

FreeLists. A check is then made to see if the LFH or the Back-end should be used.

//get the appropriate freelist to use based on size

int FreeListIndex = BlockSize - HeapListLookup->BaseIndex;

_LIST_ENTRY *FreeList = &HeapListLookup->ListHints[FreeListIndex];

if(FreeList)

{

 //check FreeList[index]->Blink to see if the heap bucket

//context has been populated via RtlpGetLFHContext()

 //RtlpGetLFHContext() stores the HeapBucket

//context + 1 in the Blink

 _HEAP_BUCKET *HeapBucket = FreeList->Blink;

 if(HeapBucket & 1)

 {

 RetChunk = RtlpLowFragHeapAllocFromContext(HeapBucket-1, aBytes);

 if(RetChunk && heap->Flags == HEAP_ZERO_MEMORY)

 memset(RetChunk, 0, RoundSize);

 }

}

//if the front-end allocator did not succeed, use the back-end

if(!RetChunk)

{

 RetChunk = RtlpAllocateHeap(heap, Flags | 2, Size, RoundSize, FreeList)

}

© 2009 IBM Corporation

Algorithms: Allocation : Back-end

“Working in the library? Everyday day I’m Hustlin’!”

© 2010 IBM Corporation

Allocation: Back-end

• RtlpAllocateHeap: Part I
• The size is rounded if necessary and RtlpPerformHeapMaintenance() based on

the CompatibilityFlags. This is what will actually enables the LFH.

int RoundSize = aRoundSize;

//if the FreeList isn't NULL, the rounding has already

//been preformed

if(!FreeList)

{

 RoundSize = Round(Size)RoundSize;

}

int SizeInBlocks = RoundSize / 8;

if(SizeInBlocks < 2)

{

 //RoundSize += sizeof(_HEAP_ENTRY)

 RoundSize = RoundSize + 8;

 SizeInBlocks = 2;

}

//if NOT HEAP_NO_SERIALIZE, use locking mechanisms

//LFH CANNOT be enabled if this path isn't taken

if(!(Flags & HEAP_NO_SERIALIZE))

{

 if(Heap->CompatibilityFlags & 0x60000000)

 RtlpPerformHeapMaintenance(Heap);

}

© 2010 IBM Corporation

Allocation: Back-end

• RtlpAllocateHeap: Part II
• If there is a FreeList and it doesn’t hold a _HEAP_BUCKET update the flags used to

enable the LFH. If the LFH is already enabled assign the _HEAP_BUCKET to the blink.

//if this freelist doesn't hold a _HEAP_BUCKET

if(FreeList != NULL && !(FreeList->Blink & 1))

{

 //increment the counter

 FreeList->Blink += 0x10002;

 //on the 0x10th time, try to get a _HEAP_BUCKET

 if(WORD)FreeList->Blink > 0x20 || FreeList->Blink > 0x10000000)

 {

 int FrontEndHeap;

 if(Heap->FrontEndHeapType == 0x2)

 FrontEndHeap = Heap->FrontEndHeap;

 else

 FrontEndHeap = NULL;

 //gets _HEAP_BUCKET in LFH->Bucket[BucketSize]

 char *LFHContext = RtlpGetLFHContext(FrontEndHeap, Size);

 //if the context isn't set AND

 //we've seen 0x10+ allocations, set the flags

 if(LFHContext == NULL)

 {

 if((WORD)FreeList->Blink > 0x20)

 {

 //RtlpPerformHeapMaintenance heuristic

 if(Heap->FrontEndHeapType == NULL)

 Heap->CompatibilityFlags |= 0x20000000;

 }

 }

 else

 {

 //save the _HEAP_BUCKET in the Blink

 FreeList->Blink = LFHContext + 1;

 }

 }

}

© 2010 IBM Corporation

Allocation: Back-end

• RtlpAllocateHeap: Part III
• If we’ve found a chunk in one of the FreeLists it can now be safely unlinked from the list

and the ListsInUseUlong will be updated if necessary. The chunk will then be returned to the

calling process.

//attempt to use the Flink

if(FreeList != NULL && FreeList->Flink != NULL)

{

 //saved values

 _HEAP_ENTRY *Blink = FreeList->Blink;

 _HEAP_ENTRY *Flink = FreeList->Flink;

 //get the heap chunk header by subtracting 8

 _HEAP_ENTRY *ChunkToUseHeader = Flink - 8;

 DecodeAndValidateChecksum(ChunkToUseHeader);

 //ensure safe unlinking before acquiring this chunk for use

 if(Blink->Flink != Flink->Blink || Blink->Flink != FreeList)

 {

 RtlpLogHeapFailure();

 //XXX RtlNtStatusToDosError and return

 }

 //update the bitmap if needed

 _HEAP_LIST_LOOKUP *BlocksIndex = Heap->BlocksIndex;

 if(BlocksIndex)

 {

 int FreeListOffset = GetFreeListOffset();

 //if there are more of the same size

 //don't update the bitmap

 if(!LastInList(BlockIndex, FreeListOffset)

 BlocksIndex->ListHints[FreeListOffset] = Flink->Flink;

 else

 UpdateBitmap(BlocksIndex->ListsInUseUlong); //bitwse AND

 }

 //unlink the current chunk to be allocated

 Blink->Flink = Flink;

 Flink->Blink = Blink;

}

© 2010 IBM Corporation

Allocation: Back-end

• RtlpAllocateHeap: Part IV
• If the ListHints weren’t successful, attempt to use the Heap->FreeList / BlocksIndex->ListHead. If

successful it will return ChunkToUse, otherwise the heap will need to be extended via RtlpExtendHeap().

//BI->ListHead == Heap->FreeLists

_LIST_ENTRY *HeapFreeLists = &Heap->FreeLists;

_LIST_ENTRY *ChunkToUse;

_HEAP_LIST_LOOKUP *BI = Heap->BlocksIndex;

while(1)

{

 //bail if the list is empty

 if(BI == NULL || BI->ListHead == BI->ListHead)

 {

 ChunkTouse = BI->ListHead;

 break;

 }

 _HEAP_ENTRY *BlinkHeader = DecodeHeader(BI->ListHead->Blink - 8);

 //if the requested size is too big, extend the heap

 if(SizeInBlocks > BlinkHeader->Size)

 {

 ChunkToUse = BI->ListHead;

 break;

 }

 _HEAP_ENTRY *FlinkHeader = DecodeHeader(BI->ListHead->Flink-8);

 //if the first chunk is sufficient use it

 //otherwise loop through the rest

 if(FlinkHeader->Size >= SizeInBlocks)

 {

 ChunkToUse = CurrListHead->Flink;

 break;

 }

 else

 FindChunk(BlocksIndex->ListHints, SizeInBlocks)

 //look at the next blocks index

 BI = BI->ExtendedLookup;

}

© 2009 IBM Corporation

Algorithms: Allocation : Front-End

“Dr. Raid will take your pizza, fo sho“

© 2010 IBM Corporation

Allocation: Front-end

• RtlpLowFragHeapAllocFromConext: Part I
• A _HEAP_SUBSEGMENT is acquired based off the _HEAP_BUCKET passed to the function. The Hint

SubSegment is tried first, proceeding to the ActiveSubsegment pending a failure. If either of these

succeed in the allocation request, the chunk is returned.

//gets the data structures based off the SizeIndex (affinity left otu)

_LFH_HEAP *LFH = GetLFHFromBucket(HeapBucket);

_HEAP_LOCAL_DATA *HeapLocalData = LFH->LocalData[LocalDataIndex];

_HEAP_LOCAL_SEGMENT_INFO *HeapLocalSegmentInfo = HeapLocalData-

>SegmentInfo[HeapBucket->SizeIndex];

//try to use the 'Hint' SubSegment first

//otherwise this would be 'ActiveSubsegment'

_HEAP_SUBSEGMENT *SubSeg = HeapLocalSegmentInfo->Hint;

_HEAP_SUBSEGMENT *SubSeg_Saved = HeapLocalSegmentInfo->Hint;

if(SubSeg)

{

 while(1)

 {

 //get the current AggregateExchange information

 _INTERLOCK_SEQ *AggrExchg = SubSeg->AggregateExchg;

 int Offset = AggrExchg->FreeEntryOffset;

 int Depth = AggrExchg->Depth;

 int Sequence = AggrExchg->Sequence

 //attempt different subsegment if this one is invalid

 _HEAP_USERDATA_HEADER *UserBlocks = SubSeg->UserBlocks;

 if(!Depth || !UserBlocks || SubSeg->LocalInfo != HeapLocalSegmentInfo)

 break;

 int ByteOffset = Offset * 8;

 LFHChunk = UserBlocks + ByteOffset;

 //the next offset is store in the 1st 2-bytes of the user data

 short NextOffset = UserBlocks + ByteOffset + sizeof(_HEAP_ENTRY));

 if(AtomicUpdate(AggrExchg, NextOffset, Depth--)

 return LFHChunk;

 else

 SubSeg = SubSeg_Saved;

 }

}

© 2010 IBM Corporation

Allocation: Front-end
• RtlpLowFragHeapAllocFromConext: Part II

• If a SubSegment wasn’t able to fulfill the allocation, the LFH must create a new SubSegment along

with an associated UserBlock. A UserBlock is the chunk of memory that holds individual chunks

for a specific _HEAP_BUCKET. A certain formula is used to calculate how much memory should

actually be acquired via the back-end allocator.

//assume no bucket affinity

int TotalBlocks = HeapLocalSegmentInfo->Counters->TotalBlocks;

int BucketBytesSize = RtlpBucketBlockSizes[HeapBucket->SizeIndex];

int StartIndex = 7;

int BlockMultiplier = 5;

if(TotalBlocks < (1 << BlockMultiplier)) { TotalBlocks = 1 << BlockMultiplier; }

if(TotalBlocks > 1024) { TotalBlocks = 1024; }

//used to calculate cache index and size to allocate

int TotalBlockSize = TotalBlocks * (BucketBytesSize + sizeof(_HEAP_ENTRY)) +

sizeof(_HEAP_USERDATA_HEADER) + sizeof(_HEAP_ENTRY);

if(TotalBlockSize > 0x78000) { TotalBlockSize = 0x78000; }

//calculate the cahce index upon a cache miss, this index will determine

//the amount of memory to be allocated

if(TotalBlockSize >= 0x80)

{

 do

 {

 StartIndex++;

 }while(TotalBlockSize >> StartIndex);

}

//we will @ most, only allocate 40 pages (0x1000 bytes per page)

if((unsigned)StartIndex > 0x12)

 StartIndex = 0x12;

int UserBlockCacheIndex = StartIndex;

//allocate ((1 << UserBlockCacheIndex) / BucketBytesSize) chunks on a cache miss

void *pUserData = RtlpAllocateUserBlock(lfh, UserBlockCacheIndex, BucketByteSize + 8);

_HEAP_USERDATA_HEADER *UserData = (_HEAP_USERDATA_HEADER*)pUserData;

if(!pUserData)

 return 0;

© 2010 IBM Corporation

Allocation: Front-end

• RtlpLowFragHeapAllocFromConext: Part III
• Now that a UserBlock has been allocated, the LFH can acquire a _HEAP_SUBSEGMENT. If a

SubSegment has been found it will then initialize that SubSegment along with the UserBlock;

otherwise the back-end will have to be used to fulfill the allocation request.

int UserDataBytesSize = 1 << UserData->AvailableBlocks;

if(UserDataBytesSize > 0x78000) { UserDataBytesSize = 0x78000; }

int UserDataAllocSize = UserDataBytesSize - 8;

//Increment SegmentCreate to denote a new SubSegment created

InterlockedExchangeAdd(&LFH->SegmentCreate, 1);

_HEAP_SUBSEGMENT *NewSubSegment = NULL;

DeletedSubSegment = ExInterlockedPopEntrySList(HeapLocalData);

if (DeletedSubSegment)

 NewSubSegment = (_HEAP_SUBSEGMENT *)(DeletedSubSegment - 0x18);

else

{

 NewSubSegment = RtlpLowFragHeapAllocateFromZone(LFH, LocalDataIndex);

 if(!NewSubSegment)

 return 0;

}

//this function will setup the _HEAP_SUBEMENT structure

//and chunk out the data in 'UserData' to be of HeapBucket->SizeIndex chunks

RtlpSubSegmentInitialize(LFH,

 NewSubSegment,

 UserBlock,

 RtlpBucketBlockSizes[HeapBucket->SizeIndex],

 UserDataAllocSize,HeapBucket);

//each UserBlock starts with the same sig

UserBlock->Signature = 0xF0E0D0C0;

//now used for LFH allocation for a specific bucket size

NewSubSegment = AtomicSwap(&HeapLocalSegmentInfo->ActiveSegment, NewSubSegment);

© 2010 IBM Corporation

Allocation: Front-end
• RtlpLowFragHeapAllocFromConext: Part IV [RtlpSubSegmentInitalize]

• The UserBlock chunk is divided into BucketBlockSize chunks followed by the SubSegment

initialization. Finally, this new SubSegment is ready to be assigned to the

HeapLocalSegmentInfo->ActiveSubsegment.

void *UserBlockData = UserBlock + sizeof(_HEAP_USERDATA_HEADER);

int TotalBucketByteSize = BucketByteSize + sizeof(_HEAP_ENTRY);

int BucketBlockSize = TotalBucketByteSize / 8;

//sizeof(_HEAP_USERDATA_HEADER) == 0x10

int NumberOfChunks = (UserDataAllocSize - 0x10) / TotalBucketByteSize;

//skip past the header, so we can start chunking

void *pUserData = UserBlock + sizeof(_HEAP_USERDATA_HEADER);

//assign the SubSegment

UserBlock->SubSegment = NewSubSegment;

//sizeof(_HEAP_USERDATA_HEADER) == 0x10 (2 blocks)

int SegmentOffset = 2;

_INTERLOCK_SEQ AggrExchg_New;

AggrExchg_New.FreeEntryOffset = 2;

if(NumberOfChunks)

{

 int NumberOfChunksItor = NumberOfChunks;

 do

 {

 SegmentOffset += BucketBlockSize;

 pUserData = UserBlockData;

 UserBlockData += BucketByteSize;

 //next FreeEntryOffset

 (WORD)(pUserData + 8) = SegmentOffset;

 //Set _HEAP_ENTRY.LFHFlags

 (BYTE)(pUserData + 6) = 0x0;

 //Set _HEAP_ENTRY.ExtendedBlockSignature

 (BYTE)(pUserData + 7) = 0x80;

 EncodeDWORD(LFH, pUserData)

 }

 while(NumberOfChunksItor--);

}

//-1 indicates last chunk in the UserBlock

(WORD)(pUserData + 8) = -1;

//Sets all the values for this subsegment

InitSubSegment(NewSubSegment);

© 2010 IBM Corporation

Allocation: Front-End : Example I

© 2010 IBM Corporation

Allocation : Front-End : Example II

© 2010 IBM Corporation

Allocation : Front-End : Example III

© 2009 IBM Corporation

Algorithms: Freeing

“How can you go wrong? (re: Dogs wearing sunglasses)”

© 2010 IBM Corporation

Freeing

• RtlFreeHeap
• RtlFreeHeap will determine if the chunk is free-able. If so it will decide if the LFH

or the back-end should be responsible for releasing the chunk.

ChunkHeader = NULL;

//it will not operate on NULL

if(ChunkToFree == NULL)

 return;

//ensure the chunk is 8-byte aligned

if(!(ChunkToFree & 7))

{

 //subtract the sizeof(_HEAP_ENTRY)

 ChunkHeader = ChunkToFree - 0x8;

 //use the index to find the size

 if(ChunkHeader->UnusedBytes == 0x5)

 ChunkHeader -=

 0x8 * (BYTE)ChunkToFreeHeader->SegmentOffset;

}

else

{

 RtlpLogHeapFailure();

 return;

}

//position 0x7 in the header denotes whether the chunk was allocated via

//the front-end or the back-end (non-encoded ;))

if(ChunkHeader->UnusedBytes & 0x80)

 RtlpLowFragHeapFree(Heap, ChunkToFree);

else

 RtlpFreeHeap(Heap, Flags | 2, ChunkHeader, ChunkToFree);

return;

© 2009 IBM Corporation

Algorithms: Freeing : Back-End

“Spencer Pratt explained this to me”

© 2010 IBM Corporation

Freeing : Back-End

• RtlpFreeHeap: Part I
• The back-end manager will first look for a ListHint index to use as an insertion

point. It will then attempt to update the counter used in the LFH heuristic.

//returns ArraySize-1 on miss & no ExtendedLookup

_HEAP_LIST_LOOKUP *BlocksIndex = Heap->BlocksIndex;

ChunkSize = SearchBlocksIndex(BlocksIndex, ChunkHeader->Size);

//attempt to locate a FreeList

_LIST_ENTRY *ListHint = NULL;

//if the chunk can fit on a blocksindex OR

//BlocksIndex[ArraySize-BaseIndex-1] can hold the chunk

if(FitsInBlocksIndex(BlocksIndex, ChunkSize))

{

 int FreeListIndex = ChunkSize - BlocksIndex->BaseIndex;

 //acquire a dedicated freelist

 ListHint = BlocksIndex->ListHints[FreeListIndex];

}

if(ListHint != NULL)

{

 //If no _HEAP_BUCKET adjust counter

 if(!(BYTE)ListHint->Blink & 1)

 {

 if(ListHint->Blink >= 2)

 ListHint->Blink = ListHint->Blink - 2;

 }

}

© 2010 IBM Corporation

Freeing : Back-End

• RtlpFreeHeap: Part II
• The header values are set for the chunk being freed and it is coalesced if

necessary. While the function may be called every iteration, it will only combine

chunks that are adjacently FREE.

//unless the heap says otherwise, coalesce the adjacent free blocks

int ChunkSize = ChunkHeader->Size;

if(!(Heap->Flags & 0x80))

{

 //combine the adjacent blocks

 ChunkHeader = RtlpCoalesceFreeBlocks(Heap, ChunkHeader, &ChunkSize, 0x0);

}

//reassign the ChunkSize if neccessary

ChunkSize = ChunkHeader->Size;

//XXX Decomit or Give to Virtual Memory if exceeding the Thresholds

//mark the chunk as FREE

ChunkHeader->Flags = 0x0;

ChunkHeader->UnusedBytes = 0x0;

© 2010 IBM Corporation

Freeing : Back-End

• RtlpFreeHeap: Part III
• Now the heap manager will find which BlocksIndex and corresponding ListHint will manage this

chunk. It will ensure that ListHead isn’t empty and can insert this chunk before the largest chunk

residing on the list.
BlocksIndex = Heap->BlocksIndex;

_LIST_ENTRY *InsertList = Heap->FreeLists.Flink;

//attempt to find where to insert this item

//on the ListHead list for a particular BlocksIndex

if(BlocksIndex)

{

 int FreeListIndex = BlocksIndexSearch(BlocksIndex, ChunkSize)

 while(BlocksIndex != NULL)

 {

 //abort if the list is empty or too large to fit on this list

 _HEAP_ENTRY *ListHead = BlocksIndex-ListHead;

 if(ListHead == ListHead->Blink || ChunkSize > ListHead->Blink.Size)

 {

 InsertList = ListHead;

 break;

 }

 //start at the beginning of the ListHead pick the insertion point behind the 1st

 //chunk larger than the ChunkToFree

 _LIST_ENTRY *NextChunk = BlocksIndex->ListHints[FreeListIndex];

 while(NextChunk != ListHead)

 {

 //there is actually some decoding done here

 if(NextChunk.Size > ChunkSize)

 {

 InsertList = NextChunk;

 break;

 }

 NextChunk = NextChunk->Flink;

 }

 //if we've found an insertion point, break

 if(InsertList != Heap->FreeLists.Flink)

 break;

 BlocksIndex = BlocksIndex->ExtendedLookup;

 }

}

© 2010 IBM Corporation

Freeing : Back-End

• RtlpFreeHeap: Part IV
• Finally the chunk is safely linked into the list and ListInUseUlong is updated.

while(InsertList != Heap->FreeLists)

{

 if(InsertList.Size > ChunkSize)

 break;

 InsertList = InsertList->Flink;

}

//R.I.P FreeList Insertion Attack

if(InsertList->Blink->Flink == InsertList)

{

 ChunkToFree->Flink = InsertList;

 ChunkToFree->Blink = InsertList->Blink;

 InsertList->Blink->Flink = ChunkToFree;

 InsertList->Blink = ChunkToFree

}

else

{

 RtlpLogHeapFailure();

}

if(BlocksIndex)

{

 FreeListIndex = BlocksIndexSearch(BlocksIndex, ChunkSize);

 _LIST_ENTRY *FreeListToUse = BlocksIndex->ListHints[FreeListIndex];

 if(ChunkSize >= FreeListToUse.Size)

 BlocksIndex->ListHints[FreeListIndex] = ChunkToFree;

 //bitwise OR instead of previous XOR R.I.P Bitmap flipping (hi nico)

 if(!FreeListToUse)

 {

 int UlongIndex = Chunkize - BlocksIndex->BaseIndex >> 5;

 int Shifter = ChunkSize - BlocksIndex->BaseIndex & 1F;

 BlocksIndex->ListsInUseUlong[UlongIndex] |= 1 << Shifter;

 }

 EncodeHeader(ChunkHeader);

}

© 2009 IBM Corporation

Algorithms: Freeing : Front-End

“Omar! Omar! Omar comin’!”

© 2010 IBM Corporation

Freeing : Front-End

• RtlpLowFragHeapFree: Part I
• The chunk header will be checked to see if a relocation is necessary. Then the

chunk to be freed will be used to get the SubSegment. Flags indicating the chunk

is now FREE are also set.

//hi ben hawkes :)

_HEAP_ENTRY *ChunkHeader = ChunkToFree - sizeof(_HEAP_ENTRY);

if(ChunkHeader->UnusedBytes == 0x5)

 ChunkHeader -= 8 * (BYTE)ChunkHeader->SegmentOffset;

_HEAP_ENTRY *ChunkHeader_Saved = ChunkHeader;

//gets the subsegment based from the LFHKey, Heap and ChunkHeader

_HEAP_SUBSEGMENT SubSegment = GetSubSegment(Heap, ChunkToFree);

_HEAP_USERDATA_HEADER *UserBlocks = SubSegment->UserBlocks;

//Set flags to 0x80 for LFH_FREE (offset 0x7)

ChunkHeader->UnusedBytes = 0x80;

//Set SegmentOffset or LFHFlags (offset 0x6)

ChunkHeader->SegmentOffset = 0x0;

© 2010 IBM Corporation

Freeing : Front-End

• RtlpLowFragHeapFree: Part II
• The Offset and Depth can now be updated. The NewOffset should point to the

chunk that was recently freed and the depth will be incremented by 0x1.

while(1)

{

 int Depth = SubSegment->AggregateExchg.Depth;

 int Offset = SubSegment->AggregateExchg.FreeEntryOffset;

 _INTERLOCK_SEQ AggrExchg_New;

 AggrExchg_New.Sequence = UpdateSeq(SubSegment->AggregateExchg);

 if(!MaintanenceNeeded(SubSegment))

 {

 //set the FreeEntry Offset ChunkToFree

 *(WORD)(ChunkHeader + 8) = Offset;

 //Get the next free chunk, based off the offset from the UserBlocks

 //add 0x1 to the depth due to freeing

 int NewOffset = Offset - ((ChunkHeader - UserBlocks) / 8);

 AggrExchg_New.FreeEntryOffset = NewOffset;

 AggrExchg_New.Depth = Depth + 1;

 //this is where Hint is set :)

 SubSegment->LocalInfo->Hint = SubSegment;

 }

 else

 {

 PerformSubSegmentMaintenance(SubSegment);

 RtlpFreeUserBlock(LFH, SubSegment->UserBlocks);

 break;

 }

 //_InterlockedCompareExchange64

 if(AtomicSwap(&SubSegment->AggregateExchg, AggrExchg_New))

 break;

 else

 ChunkHeader = ChunkHeader_Saved;

}

© 2010 IBM Corporation

Freeing : Front-End : Example I

© 2010 IBM Corporation

Freeing : Front-End : Example II

© 2010 IBM Corporation

Freeing : Front-End : Example III

© 2009 IBM Corporation

Security Mechanisms

“@shydemeanor I think I’m using too much code in the slides.”

© 2010 IBM Corporation

Security Mechanisms : Heap Randomization
int RandPad = (RtlpHeapGenerateRandomValue64() & 0x1F) << 0x10;

//if maxsize + pad wraps, null out the randpad

int TotalMaxSize = MaximumSize + RandPad;

if(TotalMaxSize < MaximumSize)

{

 TotalMaxSize = MaximumSize;

 RandPad = Zero;

}

if(NtAllocateVirtualmemory(-1, &BaseAddress....))

 return 0;

heap = (_HEAP*)BaseAddress;

MaximumSize = TotalMaxSize;

//if we used a random pad, adjust the heap pointer and free the memory

if(RandPad != Zero)

{

 if(RtlpSecMemFreeVirtualMemory())

 {

 heap = (_HEAP*)RandPad + BaseAddress;

 MaximumSize = TotalSize - RandPad;

 }

}

• Information
• 64k aligned

• 5-bits of entropy

• Used to avoid the same HeapBase on

consecutive runs

• Thoughts
• Not impossible to brute force

• If TotalMaxSize wraps, there will be no

RandPad

• Hard to influence HeapCreate()

• Unlikely due to NtAllocateVirtualmemory()

failing

© 2010 IBM Corporation

Security Mechanisms : Header Encoding/Decoding

• Information
• Size, Flags, CheckSum encoded

• Prevents predictable overwrites w/o

information leak

• Makes header overwrites much more difficult

• Thoughts
• NULL out Heap->EncodeFlagMask

• I believe a new heap would be in order.

• Overwrite first 4 bytes of encoded header to

break Header & Heap->EncodeFlagMask

(Only useful for items in FreeLists)

• Attack last 4 bytes of the header

EncodeHeader(_HEAP_ENTRY *Header, _HEAP *Heap)

{

 if(Heap->EncodeFlagMask)

 {

 Header->SmallTagIndex =

 (BYTE)Header ^ (Byte)Header+1 ^ (Byte)Header+2;

 (DWORD)Header ^= Heap->Encoding;

 }

}

DecodeHeader(_HEAP_ENTRY *Header, _HEAP *Heap)

{

 if(Heap->EncodeFlagMask && (Header & Heap->EncodeFlagMask))

 {

 (DWORD)Header ^= Heap->Encoding;

 }

}

© 2010 IBM Corporation

Security Mechanisms : Death of Bitmap Flipping

• Information
• XOR no longer used

• OR for population

• AND for exhaustion

• Thoughts
• SOL

• Not as important as before because

FreeLists/ListHints aren’t initialized to point to

themselves.

// if we unlinked from a dedicated free list and emptied it,clear the bitmap

if (reqsize < 0x80 && nextchunk == prevchunk)

{

 size = SIZE(chunk);

 BitMask = 1 << (size & 7);

 // note that this is an xor

 FreeListsInUseBitmap[size >> 3] ^= vBitMask;

}

//HeapAlloc

size = SIZE(chunk);

BitMask = 1 << (Size & 0x1F);

BlocksIndex->ListInUseUlong[Size >> 5] &= ~BitMask;

//HeapFree

size = SIZE(chunk);

BitMask = 1 << (Size & 0x1F);

BlocksIndex->ListInUseUlong[Size >> 5] |= BitMask;

© 2010 IBM Corporation

Security Mechanisms : Safe Linking

• Information
• Prevents overwriting a FreeList->Blink, which

when linking a chunk in can be overwritten to

point to the chunk that was inserted before it

• Brett Moore Attacking FreeList[0]

• Thoughts
• Although it prevents Insertion attacks, if it

doesn’t terminate, the chunk will be placed in

one of the ListHints

• The problem is the Flink/Blink are fully

controlled due to no Linking process

• You still have to deal with Safe Unlinking, but

it’s a starting point.

if(InsertList->Blink->Flink == InsertList)

{

 ChunkToFree->Flink = InsertList;

 ChunkToFree->Blink = InsertList->Blink;

 InsertList->Blink->Flink = ChunkToFree;

 InsertList->Blink = ChunkToFree

}

else

{

 RtlpLogHeapFailure();

}

if(BlocksIndex)

{

 FreeListIndex = BlocksIndexSearch(BlocksIndex, ChunkSize);

 _LIST_ENTRY *FreeListToUse = BlocksIndex->ListHints[FreeListIndex];

 //ChunkToFree.Flink/Blink are user controlled

 if(ChunkSize >= FreeListToUse.Size)

 {

 BlocksIndex->ListHints[FreeListIndex] = ChunkToFree;

 }

 .

 .

}

© 2009 IBM Corporation

Tactics

“You do not want to pray-after-free – Nico Waisman”

© 2010 IBM Corporation

Tactics : Heap Determinism : Activating the LFH

• 0x12 (18)consecutive allocations will guarantee LFH enabled for SIZE
• 0x11 (17) if the _LFH_HEAP has been previously activated

//Without the LFH activated

//0x10 => Heap->CompatibilityFlags |= 0x20000000;

//0x11 => RtlpPerformHeapMaintenance(Heap);

//0x11 => FreeList->Blink = LFHContext + 1;

for(i = 0; i < 0x12; i++)

 HeapAlloc(pHeap, 0x0, SIZE);

© 2010 IBM Corporation

Tactics : Heap Determinism : Defragmentation

0x08 0x0E 0x14 0x1A 0x20 0x26 0x2C 0x32

0x38 0x3E 0x44 0x4A 0x50 0x56 0x5C 0x62

Gray = BUSY

Blue = FREE

0x08 0x0E 0x14 0x1A 0x20 0x26 0x2C 0x32

0x38 0x3E 0x44 0x4A 0x50 0x56 0x5C 0x62

Gray = BUSY

Blue = FREE

• A game of filling the holes

• Easily done by making enough allocations to create a

new SubSegment with associated UserBlock

© 2010 IBM Corporation

Tactics : Heap Determinism : Adjacent Data
EnableLFH(SIZE);

NormalizeLFH(SIZE);

alloc1 = HeapAlloc(pHeap, 0x0, SIZE);

alloc2 = HeapAlloc(pHeap, 0x0, SIZE);

memset(alloc2, 0x42, SIZE);

*(alloc2 + SIZE-1) = '\0';

alloc3 = HeapAlloc(pHeap, 0x0, SIZE);

memset(alloc3, 0x43, SIZE);

*(alloc3 + SIZE-1) = '\0';

printf("alloc2 => %s\n", alloc2);

printf("alloc3 => %s\n", alloc3);

memset(alloc1, 0x41, SIZE * 3);

printf("Post overflow..\n");

printf("alloc2 => %s\n", alloc2);

printf("alloc3 => %s\n", alloc3);

Result:

alloc2 => BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

alloc3 => CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Post overflow..

alloc2 => AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCC

 CCCCCCCCC

alloc3 => AAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCCCCCC

alloc1 = HeapAlloc(pHeap, 0x0, SIZE);

alloc2 = HeapAlloc(pHeap, 0x0, SIZE);

alloc3 = HeapAlloc(pHeap, 0x0, SIZE);

HeapFree(pHeap, 0x0, alloc2);

//overflow-able chunk just like alloc1 could reside in same position as alloc2

alloc4 = HeapAlloc(pHeap, 0x0, SIZE);

memcpy(alloc4, src, SIZE)

• Overwrite into adjacent chunks

(requires normalization)

• Can overwrite NULL terminator

(Vreugdenhil 2010)

• Ability to use data in a recently freed

chunk with proper heap manipulation

© 2010 IBM Corporation

Tactics : Heap Determinism : Data Seeding

EnableLFH(SIZE);

NormalizeLFH(SIZE);

for(i = 0; i < 0x4; i++)

{

 allocb[i] = HeapAlloc(pHeap, 0x0, SIZE);

 memset(allocb[i], 0x41 + i, SIZE);

}

printf("Freeing all chunks!\n");

for(i = 0; i < 0x4; i++)

{

 HeapFree(pHeap, 0x0, allocb[i]);

}

printf("Allocating again\n");

for(i = 0; i < 0x4; i++)

{

 allocb[i] = HeapAlloc(pHeap, 0x0, SIZE);

}

Result:

Allocation 0x00 for 0x28 bytes => 41414141 41414141 41414141

Allocation 0x01 for 0x28 bytes => 42424242 42424242 42424242

Allocation 0x02 for 0x28 bytes => 43434343 43434343 43434343

Allocation 0x03 for 0x28 bytes => 44444444 44444444 44444444

Freeing all chunks!

Allocating again

Allocation 0x00 for 0x28 bytes => 0E004444 44444444 44444444

Allocation 0x01 for 0x28 bytes => 08004343 43434343 43434343

Allocation 0x02 for 0x28 bytes => 02004242 42424242 42424242

Allocation 0x03 for 0x28 bytes => 62004141 41414141 41414141

• Saved FreeEntryOffset

resides in 1st 2 bytes

• Influence the LSB of vtable

• Good for use-after-free

• See Nico Wasiman’s 2010

BH Presentation / Paper

• NICO Rules!

© 2009 IBM Corporation

Tactics : Exploitation

“For the Busticati, By the Busticati”

© 2010 IBM Corporation

Tactics : Exploitation : Ben Hawkes #1 : Part I

_HEAP_ENTRY *ChunkHeader = ChunkToFree - sizeof(_HEAP_ENTRY);

if(ChunkHeader->UnusedBytes == 0x5)

 ChunkHeader -= 8 * (BYTE)ChunkHeader->SegmentOffset;

RtlpLowFragHeapFree() will adjust the _HEAP_ENTRY if certain flags are set.

Flags ChecksumSize Prev Size UnusedBytesSeg Offset

0 2 3 4 6 7

Data = Size * 8 BytesNext Free Chunk Offset

If you can overflow into a chunk that will be freed, the SegmentOffset can be used

to point to another valid _HEAP_ENTRY.

This could lead to controlling data that was previously allocated (Think C++ objects)

© 2010 IBM Corporation

Tactics : Exploitation : Ben Hawkes #1 : Part II

XX XXXXXX XXXX 0x050x00 – 0xFF

Data = Size * 8 BytesNext Free Chunk Offset

Overflow-able chunk

Overflow direction

Parser object Alloc1 Alloc2

Parser object Alloc1 Data

After overwrite & free()

Prerequisites

• Ability to allocate SIZE

• Place legitimate a chunk before a

chunk to be overflowed

• Overflow at least 8-bytes

• Ability to free overwritten chunk

Methodology

1. Enable LFH

2. Normalize LFH

3. Alloc1

4. Alloc2

5. Overwrite Alloc2’s header to point

to an object of interest

6. Free Alloc2

7. Alloc3 (will point to the object of

interest)

8. Write data

© 2010 IBM Corporation

Tactics : Exploitation : FreeEntryOffset Overwrite: Part I

try

{

 //the next offset is stored in the 1st 2-bytes of userdata

 short NextOffset =

 UserBlocks + BlockOffset + sizeof(_HEAP_ENTRY));

 _INTERLOCK_SEQ AggrExchg_New;

 AggrExchg_New.Offset = NextOffset;

}

catch

{

 return 0;

}

All code in RtlpLowFragHeapAllocFromContext() is wrapped in

try/catch{} . All exceptions will return 0, letting the back-end handle the

allocation.

As we saw, the FreeEntryOffset is stored in the 1st 2 bytes of user-

writable data within each chunk in a UserBlock.

This will be used to get the address of the next free chunk used for

allocation. What if we overflow this chunk?

© 2010 IBM Corporation

Tactics : Exploitation : FreeEntryOffset Overwrite: Part II

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0008 NextOffset = 0x000E NextOffset = 0x0014 NextOffset = 0x001A

...
NextOffset = 0xFFFF

(Last Entry)

Memory Pages

+0x02 +0x08 +0x0E +0x14

FreeEntryOffset = 0x0002

Assume a full UserBlock for 0x30 bytes (0x6 blocks). Our first

allocation will update the FreeEntryOffset to 0x0008. (Stored in the

_INTERLOCK_SEQ.FreeEntryOffset

© 2010 IBM Corporation

Tactics : Exploitation : FreeEntryOffset Overwrite: Part III

If an overflow of at least 0x9 bytes (0xA preferable) is made. The

saved FreeEntryOffset of the adjacent chunk can be overwritten.

This gives the attacker a range of 0xFFFF * 0x8 (Offsets are stored

in blocks and converted to byte offsets.)

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x1501 NextOffset = 0x0014 NextOffset = 0x001A

...
NextOffset = 0xFFFF

(Last Entry)

Memory Pages

+0x08 +0x0E +0x14

FreeEntryOffset = 0x0008

© 2010 IBM Corporation

Tactics : Exploitation : FreeEntryOffset Overwrite: Part IV

An allocation for the overwritten block must be made next to store

the tainted offset in the _INTERLOCK_SEQ. In this example, we will

have a 0x1501 * 0x8 jump to the next ‘free chunk’.

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0014 NextOffset = 0x001A

...
NextOffset = 0xFFFF

(Last Entry)

Memory Pages

+0x0E +0x14

FreeEntryOffset = 0x1501

© 2010 IBM Corporation

Tactics : Exploitation : FreeEntryOffset Overwrite: Part V

Since it’s possible to get SubSegments adjacent to each other in memory, you

can write into other forwardly adjacent memory pages (Control over allocations

is required). This gives you the ability to overwrite data that is in a different

_HEAP_SUBSEGMENT than the one which you are overflowing.

UserBlock @ 0x5162000 for Size 0x40

Memory Pages

NextOffset = 0x000A NextOffset = 0x0012 NextOffset = 0x001A NextOffset = 0x0022

...
NextOffset = 0xFFFF

(Last Entry)

FreeEntryOffset = 0x0002

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0014 NextOffset = 0x001A

...
NextOffset = 0xFFFF

(Last Entry)

+0x0E +0x14

FreeEntryOffset = 0x1501

+0x02 +0x0A +0x12 +0x1A

© 2010 IBM Corporation

Tactics : Exploitation : FreeEntryOffset Overwrite: Part VI

UserBlock @ 0x5162000 for Size 0x40

Memory Pages

XXXX NextOffset = 0x0012 NextOffset = 0x001A NextOffset = 0x0022

...
NextOffset = 0xFFFF

(Last Entry)

FreeEntryOffset = 0x0002

UserBlock @ 0x5157800 for Size 0x30

NextOffset = 0x0014 NextOffset = 0x001A

...
NextOffset = 0xFFFF

(Last Entry)

+0x0E +0x14

FreeEntryOffset = 0x1501

+0x02 +0x0A +0x12 +0x1A

 NextChunk = UserBlock + Depth_IntoUserBlock + (FreeEntryOffset * 8)
 NextChunk = 0x5157800 + 0x0E + (0x1501 * 8)
 NextChunk = 0x5162016

Prerequisites

• Enabled the LFH

• Normalize the heap

• Control allocations for SIZE

• 0x9 – 0xA byte overflow into an

adjacent chunk

• Adjacent chunk must be FREE

• Object to overwrite within the

range (0xFFFF * 0x8 = max)

Methodology

1. Enable LFH

2. Normalize LFH

3. Alloc1

4. Overwrite into free chunk from

Alloc1

5. Alloc2 (contains overwritten

header)

6. Alloc3 (Uses overwritten

FreeEntryOffset)

7. Write data to Alloc3 (which will

be object of your choosing w/in

0xFFFF * 0x8)

© 2009 IBM Corporation

Tactics : Exploitation : Observation

“Strawberry Pudding? Psst, this is a five course meal.”

© 2010 IBM Corporation

Tactics : Exploitation : SubSegment Overwrite: Part I

_HEAP_SUBSEGMENT *SubSeg = HeapLocalSegmentInfo->ActiveSubsegment;

//checks to ensure valid subsegment

_HEAP_USERDATA_HEADER *UserBlocks =

 SubSeg->UserBlocks;

if(!Depth ||

 !UserBlocks ||

 SubSeg->LocalInfo != HeapLocalSegmentInfo)

{

 Get new subsegment;

}

_HEAP_USERDATA_HEADER *UserData =

 RtlpAllocateUserBlock(lfh, UserBlockCacheIndex, BucketByteSize + 8);

_HEAP_SUBSEGMENT *NewSubSegment = RtlpLowFragHeapAllocateFromZone(LFH,

LocalDataIndex);

RtlpSubSegmentInitialize(LFH,

 NewSubSegment,

 UserBlock,

 RtlpBucketBlockSizes[HeapBucket->SizeIndex],

 UserDataAllocSize,HeapBucket);

_HEAP_LOCAL_SEGMENT_INFO *HeapLocalSegmentInfo =

 HeapLocalData->SegmentInfo[HeapBucket->SizeIndex];

_HEAP_SUBSEGMENT *SubSeg = HeapLocalSegmentInfo->ActiveSubsegment;

If the SubSegment can not be used, it will create a new UserBlock and

assign it to a new SubSegment.

RtlpLowFragHeapAllocateFromZone will create space for new

SubSegments if they have all been exhausted.

© 2010 IBM Corporation

Tactics : Exploitation : SubSegment Overwrite: Part II

This provides a memory layout where the UserBlock data resides before

the _LFH_BLOCK_ZONE structures (which hold pointers for SubSegment

initialization).

UserBlock @ 0x15B398

LFH Block Zone @ 0x15BB98

SubSegment @

0x15BBA8

SubSegment @

0x15BBC8

SubSegment @

0x15BBE8

SubSegment @ 0x15BC08 …….

chunk chunk chunk chunk

chunk chunk chunk chunk

Contiguous Memory

© 2010 IBM Corporation

Tactics : Exploitation : SubSegment Overwrite: Part III

An overflow past the end of the UserBlock will result in the overwriting of SubSegment

information. The item of most concern is the pointer to the UserBlocks structure inside

the SubSegment. If this value can be overwritten, then a subsequent allocation will result

in a write-n to a user-supplied address.

UserBlock @ 0x15B398

LFH Block Zone @ 0x15BB98

SubSegment @

0x15BBA8

SubSegment @

0x15BBC8

SubSegment @

0x15BBE8

SubSegment @ 0x15BC08 …….

chunk chunk chunk chunk

chunk chunk chunk chunk

Contiguous Memory

© 2010 IBM Corporation

Tactics : Exploitation : SubSegment Overwrite: Part IV

if(!Depth ||

 !UserBlocks ||

 SubSeg->LocalInfo != HeapLocalSegmentInfo)

{

 break;

}

Issues
1. The UserBlock that can be overflowed MUST reside before

the space allocated for the _HEAP_SUBSEGMENT. This is not

trivial, due to most applications not having a deterministic

BlockZone->Limit. You won’t know how many pointers are

left.

2. SubSeg->LocalInfo != HeapLocalSegmentInfo. The address

of the _HEAP_LOCAL_SEGMENT_INFO structure for a

specific Bucket is required. The easiest way to determine this

value would be a leak of the _LFH_HEAP pointer. (There are

probably other ways as well)

3. A guard page could mitigate the effects of an overflow into an

adjacent SubSegment.

© 2009 IBM Corporation

Conclusion

“I know that most of the audience will be fast asleep by now.”

© 2010 IBM Corporation

Conclusion

• Data structures have become far more complex

• Dedicated FreeLists / Lookaside List are dead

• Replaced with new FreeList structure and LFH

• Many security mechanisms added since Win XP SP2

• Meta data corruption now leveraged to overwrite application data

• Heap normalization more important than ever

• Much more work to be done…

© 2010 IBM Corporation

What’s next?

• Developing reliable exploits specifically for Win7

• Abusing Un-encoded header information

• Look at Virtual / Debug allocation/free routines

• Caching mechanisms

• Continuing to come up with heap manipulation techniques

• Figuring out information leaks (heap addresses)

• HeapCON ?

© 2010 IBM Corporation

Greetz

- Jon Larimer

- Ryan Smith

- Nico Waisman

- Ben Hawkes

- Matt Miller

- Alex Sotirov

- Dino Dai Zovi

- Mark Dowd

- John McDonald

- @jmpesp

- Matthieu Suiche

Thanks to all the Busticati for their help!

© 2009 IBM Corporation

Demo

“Fin.”

