
IBM Global Technology Services

© Copyright IBM Corporation 2009

IBM Internet Security Systems
Ahead of the threat.™

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

IBM Confidential

Practical Windows

XP SP3 / 2003

Heap Exploitation

John McDonald

Christopher Valasek

IBM ISS X-Force Research

Blackhat USA 2009

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 2

Introduction

All the fun of debugging subtle race conditions,
without all the tedium of earning an honest living.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 3
3

Introduction

 Heap Exploitation used to be only Internet mildly hard™

– mov [ecx], eax

– mov [eax+4], ecx

– No PEB randomization

– Could easily lead to arbitrary DWORD overwrites

 For some reason, they made it harder

– Safe Un-linking

– Heap Cookie

– Slightly Randomized PEB

– Programs becoming more multi-threaded

– Vista

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 4
4

History

 Windows has strong tradition of technical heap research

– Well, until today

 Matt and Oded’s 4-5 talks

– Homework: try to track down all the different versions

 Brett’s BH06 talk is literally 17 times better than this one

 Very interesting details if you pay attention

 Ben Hawkes Vista tour de force

 Nico Waisman is *really* good at Internet

– Nuff said

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 5

Things we will cover…

 Memory Management Foundations

– Core data structures

– Core algorithms

– Security mechanisms

 Tactics

– Lookaside list link overwrite

– Bitmap attacks

– Exploiting Freelist[0]

– Lookaside list exception handler

– Heap cache exploitation

 Strategy

 Demo

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 6

Fundamentals

“If ntdll ever changes, I quit.”
 - Christopher Valasek

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 7

Heap Base

 Heap Base

– The heap base is a 0x588 byte data structure that is at the

beginning of every Windows XPSP3/2003 heap

– Used to keep track of the memory currently being managed

– It contains vital information about data structure identifiers, how to

handle memory requests, free memory chunks, and much more

– The following slide is a dump of the debugging information for the

default Windows heap in a sample application running under XP

SP3:

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 8

Heap Base Dump

 0:001> dt _HEAP 150000

 ntdll!_HEAP

 +0x000 Entry : _HEAP_ENTRY

 +0x008 Signature : 0xeeffeeff

 +0x00c Flags : 2

 +0x010 ForceFlags : 0

 +0x014 VirtualMemoryThreshold : 0xfe00

 +0x018 SegmentReserve : 0x100000

 +0x01c SegmentCommit : 0x2000

 +0x020 DeCommitFreeBlockThreshold : 0x200

 +0x024 DeCommitTotalFreeThreshold : 0x2000

 +0x028 TotalFreeSize : 0x68

 +0x02c MaximumAllocationSize : 0x7ffdefff

 +0x030 ProcessHeapsListIndex : 1

 +0x032 HeaderValidateLength : 0x608

 +0x034 HeaderValidateCopy : (null)

 +0x038 NextAvailableTagIndex : 0

 +0x03a MaximumTagIndex : 0

 +0x03c TagEntries : (null)

 +0x040 UCRSegments : (null)

 +0x044 UnusedUnCommittedRanges : 0x00150598 _HEAP_UNCOMMMTTED_RANGE

 +0x048 AlignRound : 0xf

 +0x04c AlignMask : 0xfffffff8

 +0x050 VirtualAllocdBlocks : _LIST_ENTRY [0x150050 - 0x150050]

 +0x058 Segments : [64] 0x00150640 _HEAP_SEGMENT

 +0x158 u : __unnamed

 +0x168 u2 : __unnamed

 +0x16a AllocatorBackTraceIndex : 0

 +0x16c NonDedicatedListLength : 0

 +0x170 LargeBlocksIndex : (null)

 +0x174 PseudoTagEntries : (null)

 +0x178 FreeLists : [128] _LIST_ENTRY [0x150178 - 0x150178]

 +0x578 LockVariable : 0x00150608 _HEAP_LOCK

 +0x57c CommitRoutine : (null)

 +0x580 FrontEndHeap : 0x00150688

 +0x584 FrontHeapLockCount : 0

 +0x586 FrontEndHeapType : 0x1 ''

 +0x587 LastSegmentIndex : 0 ''

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 9

Segment Base

 Segments

– A contiguous range of reserved virtual memory

– Typically a fraction is committed up-front

– The rest is committed later

 Segment Base

– Each heap contains a segment base that is used to keep track of

memory associated with heap segments

– The segment base is an array of 64 _HEAP_SEGMENT structures

– Each _HEAP_SEGMENT can be traversed to view information

about each heap chunk contained by that segment

– This is done by some debugging tools (Thanks Nico ) to provide

information about heap chunks

– The following slide contains a debugging dump of a

_HEAP_SEGMENT structure under Windows XP SP3:

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 10

Heap Segment Dump

 0:001> dt _HEAP_SEGMENT 150640

 ntdll!_HEAP_SEGMENT

 +0x000 Entry : _HEAP_ENTRY

 +0x008 Signature : 0xffeeffee

 +0x00c Flags : 0

 +0x010 Heap : 0x00150000 _HEAP

 +0x014 LargestUnCommittedRange : 0xfc000

 +0x018 BaseAddress : 0x00150000

 +0x01c NumberOfPages : 0x100

 +0x020 FirstEntry : 0x00150680 _HEAP_ENTRY

 +0x024 LastValidEntry : 0x00250000 _HEAP_ENTRY

 +0x028 NumberOfUnCommittedPages : 0xfc

 +0x02c NumberOfUnCommittedRanges : 1

 +0x030 UnCommittedRanges : 0x00150588
_HEAP_UNCOMMMTTED_RANGE

 +0x034 AllocatorBackTraceIndex : 0

 +0x036 Reserved : 0

 +0x038 LastEntryInSegment : 0x00153cc0 _HEAP_ENTRY

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Memory Layout Example

11

0x90000

HEAP BASE

0x90640

HEAP SEGMENT 0

Segment Reserve: 0x200000

Segment Commit: 0x2000

UCRSegments: 0x1970000

UnusedUnCommittedRanges: 0x1970050

0x90050

VirtualAllocedBlocks.Flink = 0x90050

VitrualAllocedBlocks.Blink = 0x90050

Segment[0] = 0x90640

Segment[1] = 0x2490000

Segment[2..] = NULL

LastSegmentIndex = 1

Heap = 0x90000

LargestUnCommittedRange = 0x3000

BaseAddress = 0x90000

NumberOfPages = 0x100

FirstEntry = 0x90680

LastValidEntry = 0x190000

NumberOfUnCommittedPages = 0x11

NumberOfUnCommittedRanges=0xA

UnCommittedRanges = 0x905D8

LastEntryInSegment = 0x16A100

0x1970000

UCR SEGMENT

0x2490000

HEAP SEGMENT 1

Heap = 0x90000

LargestUnCommittedRange = 0xE6000

BaseAddress = 0x2490000

NumberOfPages = 0x100

FirstEntry = 0x2490040

LastValidEntry = 0x2590000

NumberOfUnCommittedPages = 0xE7

NumberOfUnCommittedRanges=0x2

UnCommittedRanges = 0x1970010

LastEntryInSegment = 0x2498000

Next = NULL

ReservedSize = 0x10000

CommittedSize = 0x1000

Next = 0x90588

Address = 0x2493000

Size = 0x1000

Next = NULL

Address = 0x181000

Size = 0x1000

Next = 0x905C8

Address = 0x152000

Size =0x2000

Next = 0x905A8

Address = 0x170000

Size = 0x3000

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 12

Front-end Manager

 Lookaside List (LAL)

– Array of 128 linked lists

containing 48 byte data

structures

– Each bucket of the array

represents free chunks of a

certain size that are below 1024

bytes

– The free chunks in each bucket

are the size of the bucket,

multiplied by 8

 i.e. LAL[4] = 32 byte free

chunks

 Buckets 0 and 1 are not

used because each heap

chunk requires 8 bytes for

the header

– The first 8 bytes of the 48 byte

LAL header is shown in detail

[0]

.

.

.

.

.

.

.

.

.

.

[127]

Additional data

FLINK Depth
Max

Depth

LAL LAL Header
0 8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 13

Front-end Manager

 Allocation Pseudo-code

size = allocation_request_size;

//add 8 for the chunk header

blocksize = Round(size + 8) / 8;

//get the correct bucket via LAL header size

bucket = (HeapBase+0x688) + (blocksize * 0x30);

if(size < 0x80 && LFH == 0) {

 entry = RtlpAllocateFromHeapLookaside(bucket);

 if(entry)

 return entry;

}

//use FreeList instead

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 14

Back-end Manager

 FreeList

– Contains 128 doubly-linked lists representing free chunks up to

1024 bytes

– Each list contains a sentinel node located at the base of the heap,

starting at +0x178 from the base

– An empty list is denoted by both pointers pointing back to the

sentinel head node

– FreeList[0] is a special list that contains all the free chunks that are

>= 1024 bytes

– FreeList[0] is sorted in order, from smallest to largest

– FreeList[1] is not used because each chunk must contain an 8

byte header, leaving no space for user data

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 15

Back-end Manager

 FreeList Diagram

– This diagram shows a populated FreeList[0] and an empty

FreeList[1] and FreeList[2]

NonDedicatedListLength

LargeBlocksIndex

PseudoTagEntries

FreeList[0].Blink

FreeList[0].FLink

FreeList[1].FLink

FreeList[1].BLink

FreeList[2].FLink

FreeList[2].BLink

0x16c

0x170

0x174

Heap Base

0x178

0x17c

0x180

0x184

0x188

0x18c

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 16

Back-end Manager

 FreeListInUseBitmap

– Since not all requests to be serviced have a corresponding

FreeList entry, the memory manager was given an optimization

– The FreeListInUseBitmap is 128-bit (4 byte) value located at

+0x158 from the base of the heap

– Each bit represents a bucket in the FreeList ranging from 0x00 to

0x7F

– If the bit is set, that FreeList bucket contains free chunks of that

size, otherwise the list is considered empty

– The FreeListInUseBitMap is queried when there is not a direct

match for amount of memory requested. It will then locate and use

a chunk from the next largest list

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 17

Core Algorithms

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 18

Core Algorithms

 Commitment / De-commitment

– The heap manager will initially reserve memory for use. This only
means the address range will not be gobbled up by another thread.

– Committing is the act of actually mapping and backing the
reserved virtual memory

– De-committing is the act of taking mapped memory and returning
it to the reserved section

– Processes can freely commit and de-commit memory in a
reserved chunk without actually un-reserving it (Which is called
releasing memory)

– Read / Write operations on un-committed memory will result in an
access violation (AV)

 I’ve heard a lot of people refer to this as ‘writing off the end of
the page’, which isn’t entirely false, be it that memory is
committed one page 0x1000 at a time. Why am I even
discussing this…on with the presentation!

– Reserving, committing, de-committing, and releasing of
memory are all performed by the VirtualAlloc() and VirtualFree()
functions.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 19

Core Algorithms

 FreeList Search

– If the request to be serviced is < 1016 bytes and the front-end
allocator has failed to fulfill the request, a dedicated FreeList is
used. We’ll refer to this as FreeList[n]

 If there are free entries on FreeList[n] then it is used,
otherwise the FreeListInUseBitMap is queried to find a
sufficiently sized chunk.

 If the chunk used is more than 8 bytes larger than the
requested size, it is split. The requested chunk is returned to
the user, leaving the remainder to be linked back into an
appropriate FreeList

– If the request to be serviced is >= 1024 bytes then FreeList[0] is
used. As discussed previously, FreeList[0] contains all the free
chunks that are >= 1024 bytes in size.

– Once a properly sized chunk has been found, the node is unlinked
from the FreeList, updating its FLINK/BLINK pointers, along with
that of each of its neighbors.

– A more thorough discussion of details will be covered in the
following pseudo-code…

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 20

Core Algorithms

 FreeList Search Pseudo-code pt.1

– It will first check to see if the size is less than 1024, and attempt to use the

Lookaside List. If that fails, it will continue its search in the FreeList

if (size<0x80)

{

 // we have an entry in the lookaside list

 if (chunk = RtlpAllocateFromHeapLookaside(size))

 return chunk;

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 21

Core Algorithms

 FreeList Search Pseudo-code pt.2

– If the Lookaside List fails and the size is under 1024 the dedicated

FreeList[n], which corresponds to the request side, is used. An empty

FreeList[n] will result in the FreeListInUseBitMap being queried for a

sufficiently sized chunk

 if (size<0x80)

{

 // we have an entry in the free list

 if (FreeLists[size].flink != &FreeLists[size])

 return FreeLists[size].blink;

 // ok, use bitmap to find next largest entry

 if (offset=scan_FreeListsInUseBitmap(size))

 {

 return FreeLists[offset].blink;

 }

 // we didn’t find an entry in the bitmap so fall through

 // to FreeLists[0]

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 22

Core Algorithms

 FreeList Search Pseudo-code pt.3

– If search from the dedicated FreeLists fail or the request size >= 1024,

FreeList[0] is used. It will first attempt to use the heap cache as an optimization
if (Heap->LargeBlocksIndex) // Heap Cache active?

{

 foundentry = RtlpFindEntry(Heap, size);

 // Not found in Heap Cache

 if (&FreeLists[0] == foundentry)

 return NULL;

 // returned entry not large enough

 if (SIZE(foundentry) < size)

 return NULL;

 // we’re allocing a >=4k block,

 // and the smallest block we find is >=16k.

// flush one of the large blocks, and allocate a new

 // one for the request

 if (LargeBlocksIndex->Sequence &&

 size > Heap->DeCommitFreeBlockThreshold &&

 SIZE(foundentry) > (4*size))

 {

 RtlpFlushLargestCacheBlock(vHeap);

 return NULL;

 }

 // return entry found in Heap Cache

 return foundentry;

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 23

Core Algorithms

 FreeList Search Pseudo-code pt.4

– If the Heap Cache is not active, the heap will iterate through FreeList[0] to find

an appropriately size block

// Ok, search FreeList[0] – Heap Cache is not active

Biggest = (struct _HEAP *)Heap->FreeLists[0].Blink;

// empty FreeList[0]

if (Biggest == &FreeLists[0])

 return NULL;

// Our request is bigger than biggest block available

if (SIZE(Biggest)<size)

 return NULL;

walker = &FreeLists[0];

while (1)

{

 walker = walker->Flink;

 if (walker == &FreeLists[0])

 return NULL;

 if (SIZE(walker) >= size)

 return walker;

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 24

Core Algorithms

 FreeList Unlinking

– When a free chunk of memory is selected to service a request it

has to be removed from the FreeList.

– Unlinking can be thought of as a 3 step process

 1. Remove the node from the Heap Cache (if it is active)

 2. A safe unlink is performed

• Ensures that the node being unlinked doesn’t have tainted

FLink/BLink

 3. If the node is on a dedicated FreeList (non-FreeList[0]), then

the FreeListInUseBitMap is updated accordingly

– Lets discuss some pseudo-code…

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 25

Core Algorithms

 FreeList Unlinking Pseudo-code

// remove block from Heap Cache (if activated)

RtlpUpdateIndexRemoveBlock(heap, block);

prevblock = block->blink;

nextblock = block->flink;

// safe unlink check

if ((prevblock->flink != nextblock->blink) ||

 (prevblock->flink != block))

{

 // non-fatal by default

 ReportHeapCorruption(…);

}

else

{

 // perform unlink

 prevblock->flink = nextblock;

 nextblock->blink = prevblock;

}

// if we unlinked from a dedicated free list and emptied it,

// clear the bitmap

if (reqsize<0x80 && nextblock==prevblock)

{

 size = SIZE(block);

 vBitMask = 1 << (size & 7);

 // note that this is an xor

 FreeListsInUseBitmap[size >> 3] ^= vBitMask;

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 26

Core Algorithms

 FreeList Linking

– Linking is the process of taking a free chunk and placing it into the

appropriate FreeList

– Linking occurs when:

 A block is split, placing the remainder back on the FreeList

 A chunk is freed, adding it into the appropriate FreeList

– Linking involves:

 1. Determining the correct FreeList for the chunk to be inserted

 2. Toggling the FreeListInUseBitMap if necessary

• First free chunk on an empty list

 3. Find an appropriate block and acquire its BLINK

 4. Link in the new block, updating its pointers along with those

of its neighbors

– Let’s look at some pseudo-code…

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 27

Core Algorithms

 FreeList Linking Pseudo-

code

int size = SIZE(newblock);

// we want to find a pointer to the block that will be after our

block

if (size < (0x80))

{

 afterblock = FreeList[size].flink;

 //toggle bitmap if freelist is empty

 if (afterblock->flink == afterblock)

 set_freelist_bitmap(size);

}

else

{

 if (Heap->LargeBlocksIndex) // Heap Cache active?

 afterblock = RtlpFindEntry(Heap, size);

 else

 afterblock = Freelist[0].flink;

 while(1)

 {

 if (afterblock==&FreeList[0])

 return; // we ran out of free blocks

 if (SIZE(afterblock) >= size)

 break;

 afterblock=afterblock->flink;

 }

}

// now find a pointer to the block that will be before us

beforeblock=afterblock->blink;

// we point to the before and after links

newblock->flink = afterblock;

newblock->blink = beforeblock;

// now they point to us

beforeblock->flink = newblock;

afterblock->blink = newblock;

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 28

Core Algorithms

 Coalescing

– When a heap chunk is inserted

into a list, via freeing or block

splitting, it will attempt to

coalesce with its neighbors

– This prevents a fragmented

heap

 Imagine having only free

chunks of size 0x10, the

memory manager would

need to commit more

memory for larger

allocations

– Coalescing used to be the

perfect spot for an arbitrary

DWORD overwrite, then the

HeapReportCorruption() /

safe-unlinking fail was

introduced 

//calculates this by subtracting the current->prev_size from its

location

prev = current->blink

if(prev_chunk->flags != Flags.Busy &&

(current->size + prev->size < 0xFE00)) {

 //safe unlink check

 if((prev->flink != next->blink) || (prev->flink != current))

 RtlpHeapReportCorruption(...);

 else {

 //remove from the heap cache if necessary

 RtlpUpdateIndexRemoveBlock(...);

 //unlink the coalesced chunk

 prev->blink->flink = current;

 prev->flink->blink = prev->blink;

 //add the sizes

 current->size += prev->size;

 //update FreeListInUseBitMap if necessary

 UpdateBitMap(prev);

 }

}

//the same is done for current->next

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 29

Security Mechanisms

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 30

Security Mechanisms

 Heap Cookie

– The heap cookie is a security mechanism introduced in Windows XP SP2

– Checked on free

– Below is a heap chunk header for WinXPSP2 and the algorithm used to

check for a valid heap cookie

 Note: the address of the memory chunk has a part in cookie creation

 Note: the heap cookie is only 1-byte long, leaving it somewhat

vulnerable to brute force

Size Prev Size Cookie Flags
Unused

Bytes

Segment

Index

 if((&chunk / 8) ^ chunk->cookie ^ heap->cookie) {
 RtlpHeapReportCorruption(chunk)

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 31

Security Mechanisms

 Safe Unlinking
– As mentioned previously, safe unlinking assures that a heap chunk to be freed is

not corrupted

– A check is made to determine if a prev->flink and next->blink point to the same
location.

– Then it makes sure that prev->flink points to the chunk being freed

– This made the old-school arbitrary DWORD overwrite (typically done during
coalescing) the fail, instead of the win

if(chunk->blink->flink != chunk->flink->blink)

{

 RtlpHeapReportCorruption(chunk)

}

if(chunk->blink->flink != chunk)

{

 RtlpHeapReportCorruption(chunk)

}

//Unlink / Link the chunk

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 32

Security Mechanisms

 Process Termination

– In the previous slides, we mentioned the mechanisms put in place

to prevent ‘easy’ exploitation of heap overflows

– Execution can be terminated if heap corruption is detected by the

heap manager

– This is done by setting the HeapEnableTerminateOnCorruption

flag through the HeapSetInformation() API

 This is only supported on Windows Vista and Windows Server

2008.

 For 2003 and XP, if the image gflag

FLG_ENABLE_SYSTEM_CRIT_BREAKS is set, the Heap

Manager will call DbgBreakPoint() and raise an exception if

the safe-unlink check fails. This is an uncommon setting, as its

security properties aren’t clearly documented

– In 2003, there are some corner-case corruptions that are detected

that will raise an exception. Not safe-unlink, though.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 33

Tactics

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 34

Best of Breed Tactic 1 – LAL Overwrite

 Lookaside List Link Overwrite

 Overwrite FLINK in Lookaside List Header

 Credited to Alexander Anisimov

 http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf

[4]

0x153600 0x153620 0x00000000

[4]

0x153600 0x150578 0x00000000

[4]

0x150578 0x00000000

http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Best of Breed Tactic 2 – FL[0] Attacks

Freelist[0] multiple techniques

Linking is unsafe

Safe-unlinking doesn’t Terminate

 Using the maintenance algorithms associated with FreeList[0] to achieve
overwrites

 Brett Moore rules

 Heaps about Heaps / Exploitign FreeList[0] on XPSP2 ->
http://www.insomniasec.com/releases/whitepapers-presentations

35

0x150178

FreeList [0]

0x153620

Size = 0x80

FLINK = 0x1536A0

BLINK= 0x150178

0x1536A0

Size = 0xF80

FLINK = 0x150178

BLINK= 0x153620

0x150178

FreeList [0]

0x153620

Size = 0x80

FLINK = 0x153721

BLINK= 0x150178

0x153721

Size = 0xEFF

FLINK = 0x150178

BLINK= 0x153620

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

FL[0] Attacks 2 - Chunk Linking

 ChunkC->FLINK = ChunkB

 ChunkC->BLINK = ChunkB->BLINK

 ChunkB->BLINK->FLINK = ChunkC

 ChunkB->BLINK = ChunkC

36

0x150178

FreeList [0]

0x153620

Size = 0x80

FLINK = 0x153721

BLINK= 0x150178

0x153721

Size = 0xEFF

FLINK = 0x150178

BLINK= 0x153620

0x154640

Size = 0x200

Chunk A
Chunk B

Chunk C

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Best of Breed Tactic 3 – Bitmap (FL[n]) Attacks

 Bitmap Flipping Attack

– Toggling the FreeListInUseBitMap to make empty list appear to be

populated

– Credited to Nico Waisman
 (Have you caught on that we’ve jacked most of Nico’s stuff?)

– Heaps about Heaps

– http://www.insomniasec.com/releases/whitepapers-presentations

37

http://www.insomniasec.com/releases/whitepapers-presentations
http://www.insomniasec.com/releases/whitepapers-presentations
http://www.insomniasec.com/releases/whitepapers-presentations

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 38

New Tactics

Contrary to recent “reports,” IBM
Soylent Green is almost
definitely probably not people.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 39

New Tactics

 Bitmap Attack Variation

– Nico Waisman (name drop #3 for those keeping track at home)

suggested targeting the FreeListInUseBitMap when incrementing

an arbitrary DWORD

 http://lists.immunitysec.com/pipermail/dailydave/2007-

May/004364.html

– We’ve found that scenarios where a 1-4 byte overwrites into a

chunk on a FreeList / Lookaside List == win.

– If the user can control certain allocations, he/she can use this to

toggle bits in the FreeListInUseBitMap making an empty FreeList

appear to be populated

– Let’s look at some code…

http://lists.immunitysec.com/pipermail/dailydave/2007-May/004364.html
http://lists.immunitysec.com/pipermail/dailydave/2007-May/004364.html
http://lists.immunitysec.com/pipermail/dailydave/2007-May/004364.html

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 40

New Tactics

 Bitmap XOR Attack
/* coming into here, we've found a bit in the bitmap */

/* and listhead will be set to the corresponding FreeList[n]

head*/

_LIST_ENTRY *listhead = SearchBitmap(vHeap, aSize);

/* pop Blink off list */

_LIST_ENTRY *target = listhead->Blink;

/* get pointer to heap entry (((u_char*)target) - 8) */

HEAP_FREE_ENTRY *vent = FL2ENT(target);

/* do safe unlink of vent from free list */

next = vent->Flink;

prev = vent->Blink;

if (prev->Flink != next->Blink || prev->Flink != listhead)

{

 RtlpHeapReportCorruption(vent);

}

Else

{

 prev->Flink=next;

 next->Blink=prev;

}

/* Adjust the bitmap */

// make sure we clear out bitmask if this is last entry

if (next == prev)

{

 vSize = vent->Size;

 vHeap->FreeListsInUseBitmap[vSize >> 3] ^= 1 << (vSize &

7);

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 41

New Tactics

 Bitmap Updating Problems

1.The code checks if ‘next == prev’ to determine if the recently acquired chunk

is the last chunk on the FreeList. If it appears to be the last chunk the

FreeListInUseBitmap will be updated

 This is an easy scenario to forge if 16 bytes are can be overwritten,

resulting in improper FreeListInUseBitmap updating

2.The size used for updating the bitmap is taken directly from the heap chunk

 Just like all the other heap metadata, the size can be overwritten

resulting in updating the bitmap for a FreeList incorrectly

3.FreeListInUseBitMap is updated by way of XOR.

- Clearing of the bitmap should be done by setting the bit to zero, instead

of XOR’ing the bit. This can lead to updating of arbitrary FreeLists

4.Heap chunk size is not checked to be below 0x80

- This means that we can toggle bits in semi-arbitrary locations past the

FreeListInUseBitmap. This could be quite useful because the bitmap is

located in the Heap Base.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 42

New Tactics

 RtlpAllocateFromHeapLookaside /

ExInterlockedPopEntrySList
int __stdcall RtlpAllocateFromHeapLookaside(struct LAL *lal)

{

 int result;

 try {

 result = (int)ExInterlockedPopEntrySList(&lal->ListHead);

 }

 catch {

 result = 0;

 }

 return result;

}

__fastcall ExInterlockedPopEntrySList(void *lal_head)

{

 do {

 int lock = *(lal_head + 4) - 1;

 if(lock == 0)

 return;

 flink = *(lal_head);

 }

 while (!AtomicSwap(&lal_head, flink))

}

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 43

New Tactics

 Lookaside List Exception Handler

– When allocating from the Lookaside List the code in ntdll wraps

ExInterlockedPopEntrySList (used to get item off a singly linked list)

in a ‘catch-all’ exception handler

– The exception handler will return 0, leaving the memory manager

to proceed to use the FreeLists

– If an attacker can overwrite the FLINK of the first entry on a

Lookaside List (or somehow get their overwritten entry to the

front), then they can use it to attempt to brute force stack

addresses, PEB, TIB, etc

 They would also need to control the write used on a returned

address

– An attacker could also use this as a method to bypass the

Lookaside List entirely, if using the FreeLists is more desirable.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 44

Back-end Manager

 Heap Cache (Large Block Index)
– FreeList[0] contains all the free chunks >= 1024 bytes in length

– The Heap Cache is an optimization enhancement to minimize traversals of
FreeList[0] by creating an external index for the blocks

 NOTE: It should be noted that the Heap Manager does not move any of
the blocks into the cache, the blocks are still kept in FreeList[0], but
the cache contains pointers into the nodes in FreeList[0]

– The cache consist of an array of 896 buckets (by default, it can be
configured differently) each representing chunk sizes between 1024 and
8192

– Each bucket contains a single pointer to the first block in FreeList[0] with
the size represented by the bucket

– If there is no corresponding entry in FreeList[0] the Heap Cache bucket
contains a NULL pointer

– The last bucket is special, as it points to the first free chunk in FreeList[0]
>= 8192.

 Therefore representing all free chunks >= 8192 bytes

– Since most buckets will be empty, there is a corresponding bitmap used to
speed up allocations.

 This used in the same way as the FreeListInUseBitMap

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 45

New Tactics

 Heap Cache Example

Cur Size: 0x91

Flink: 0x154BB8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91

...

0x211

...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x211

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0

Flags: None

Cur Size: 0x268

Flink: 0x150178 Blink: 0x154BB8

0x156CC0

Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 46

New Tactics

 Heap Cache Invocation
– Invoked during runtime to avoid frequent commitment / de-

commitment of memory

– Heap cache is activated when:

 32 entries simultaneously in FreeList[0]
• for (i=0;i<32;i++)

• {

• b1=HeapAlloc(pHeap, 0, 2048+i*8);

• b2=HeapAlloc(pHeap, 0, 2048+i*8);

• HeapFree(pHeap,0,b1);

• }

 256 blocks must have been de-committed
• for (i=0;i<256;i++)

• {

• b1=HeapAlloc(pHeap, 0, 65536);

• HeapFree(pHeap,0,b1);

• }

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 47

Heap Cache Attacks

 Premise of Attacks: Chunk Size is the primary key

 Heap Cache De-synchronization

– Simplest form of attack works by corrupting the size of a heap

chunk in the heap cache

– 1-byte overflow

– On alloc, chunk will be removed from FreeList[0]

– Heap Cache will contain a stale pointer to this chunk

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 48

Desynch I

 State of Nature

Cur Size: 0x91

Flink: 0x154BB8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91

...

0x211

...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x211

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0

Flags: None

Cur Size: 0x268

Flink: 0x150178 Blink: 0x154BB8

0x156CC0

Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 49

Desynch II

 1-byte Overflow

Cur Size: 0x91

Flink: 0x154BB8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91

...

0x211

...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x200

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0

Flags: None

Cur Size: 0x268

Flink: 0x150178 Blink: 0x154BB8

0x156CC0

Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 50

Desynch III

 Buffer is alloced.

 Flink and Blink written readable pointers

Cur Size: 0x91

Flink: 0x156CC8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91

...

0x211

...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x200

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0

Flags: Busy

Cur Size: 0x268

Flink: 0x150178 Blink: 0x1536A8

0x156CC0

Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Desynch IV

– The result of stale pointer:

 HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

 HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

 HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

 HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 52

New Tactics

 Heap Cache Insertion Attack

– We do desynch

– But provide evil Flink and Blink via alloc

– Need to control the first 8 bytes written

– We borrow heap base pointers from Dr.
Moore

 See Heaps about Heaps

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 53

Heap Cache Insertion I

 State of Nature

Cur Size: 0x91

Flink: 0x1574D8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91

...

0x211

...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x211

Flink: 0x1595E8 Blink: 0x155FC8

0x1574D0

Flags: None

Cur Size: 0x344

Flink: 0x150178 Blink: 0x1574D8

0x1595E0

Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 54

Heap Cache Insertion II

 We overwrite 1 byte with 0

Cur Size: 0x91

Flink: 0x1574D8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91

...

0x211

...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x200

Flink: 0x1595E8 Blink: 0x155FC8

0x1574D0

Flags: None

Cur Size: 0x344

Flink: 0x150178 Blink: 0x1574D8

0x1595E0

Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 55

Heap Cache Insertion III

 Our evil block is allocated and we control contents

Cur Size: 0x91

Flink: 0x1595E8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91

...

0x211

...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x200

Flink: 0xAABBCCDD Blink: 0x1506E8

0x1574D0

Flags: Busy

Cur Size: 0x344

Flink: 0x150178 Blink: 0x155FC8

0x1595E0

Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

We provide Flink and Blink to exploit unsafe-linking

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 56

Heap Cache Insertion IV

 Insert a block behind our evil block for the win

Cur Size: 0x91

Flink: 0x1595E8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91

...

0x211

...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x1F1

Flink: 0x1574D8 Blink: 0x1506E8

0x154BB0

Flags: None

Cur Size: 0x344

Flink: 0x150178 Blink: 0x155FC8

0x1595E0

Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

0x154BB00x1F1

... Cur Size: 0x200

Flink: 0xAABBCCDD Blink: 0x154BB8

0x1574D0

Flags: Busy

Lookaside[2] (0x1506E8)

Flink: 0x154BB8 Flink: 0x1574D8 Flink: 0xAABBCCDD

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 57

Size Targeting / Shadow FreeLists

– One of the biggest obstacles to overcome when attempting to win
against the memory manager is block splitting

– Block splitting occurs when an allocation request is serviced by a
heap block that is larger than the requested size

– It will break-up the chunk into the result block, which is returned to
the user, and the remainder block, which is coalesced if
necessary and returned to the appropriate FreeList

– A consistent heap cache will result in most allocations / linking
searches being serviced by legitimate entries in FreeList[0]

– Creation of a Shadow FreeList can create a trapdoor for a
specific allocation size, which in turn will provide more resiliency for
innocuous allocations / linking searches

 i.e. Allocations for certain amounts will be fulfilled by legitimate
entries in FreeList[0] while allocations for other sizes can
be serviced by malicious entries placed into the heap
cache

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 58

Shadow FreeList

 Shadow FreeList

Cur Size: 0x91

Flink: 0x1595E8 Blink: 0x150178

0x155FC0

0x1595E0

0x155FC0

0x91

0x93

Heap Cache (0x370000)

Flags: None

Cur Size: 0x10

Flink: 0x1574D8 Blink: 0xAABBCCDD

0x154BB0

Flags: None

Cur Size: 0x93

Flink: 0x150178 Blink: 0x155FC8

0x1595E0

Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

0x154BB00x92 Cur Size: 0x92

Flink: evil1 Blink: evil2

0x1574D0

Flags: None

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 59

Malicious Entry

 Malicious Heap Cache Entry

– Each Heap Cache bucket can refer to multiple entries

 i.e. 10 chunks of the size 0x100 in FL[0]

– The FLINK of an entry in the heap cache is followed to determine if

the bucket is empty

– If an attacker can provide a malicious FLINK value through memory

corruption, and this value is a valid pointer to an appropriate size

word, then they can get a malicious address placed into the heap

cache

 For the ‘catch-all’ bucket (chunk size >= 8192), you only need to

overwrite the FLINK with a valid pointer that points to a size that

is >= 8192

– In short, you can win if block is in Heap Cache

– Or if it’s not

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 60

Malicious Entry

 State of Nature

Cur Size: 0x100

Flink: 0x1574D8 Blink: 0x150178

NULL

0x155FC0

0x1595E0

0x155FC0

0xFF

0x100

Heap Cache (0x370000)

0x101

Flags: None

Cur Size: 0x100

Flink: 0x1595E8 Blink: 0x155FC8

0x1574D0

Flags: None

Cur Size: 0x101

Flink: 0x150178 Blink: 0x1574D8

0x1595E0

Flags: None

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 61

Malicious Entry 2

 Dedicated Block

Data

Valid Flink

Cur:0x208 Prv:0x100

Valid Blink

0 0 0 0

Data

Flink: 0x150210

Cur:0x208 Prv:0x100

Valid Blink

0 0 0 0

Flink: 0x150210

Cur:0x208 Prv:0x15

Blink: 0x150210

8 2 15 0

Pre - Overwrite Post - Overwrite

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 62

Malicious Entry 3

 Catch-All Bucket

Data

Valid Flink

Cur:0x508 Prv:0x300

Valid Blink

0 0 0 0

Data

Flink: 0x150570

Cur:0x568 Prv:0

Valid Blink

0 0 0 0

Flink: 0x150570

Cur:0x568 Prv:0x15

Blink: 0x150570

0x68 0x5 0x15 0

Pre - Overwrite Post - Overwrite

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 63

Strategy

This strategy better feature an
awesome screen-saver.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 64

Strategy

 Be vague

 Use lots of

metaphors

 Be multi-dimensional

 Be the dream?

0xA1200

0xA2C00

0xA3000

0xA0000

FreeList[0]

A
d

d
re

s
s

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 65

Meta-data or Application-data?

 Meta-data

– you attack internal Heap data structures
 Pro - you often know where meta-data is

• Base of process heap

• Heap chunk header

 Con - heap meta-data is hardened

 Application data

– you target the data *in* heap
 Pro – app data is uniformly soft

 Con – can add uncertainty

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Best of Breed Strategy

 Published
– Dr. Waisman – Memory Leaks

– Heap Spraying / Heap Feng Shui

 Originally used by SkyLined for IE IFRAME vulnerability

 Using JavaScript strings to store shellcode creating a semi-reliable return address

– Feng Shui the heap to a more deterministic state

 Alexander Sotirov: BlackHat Europe 2007

 http://www.phreedom.org/research/heap-feng-shui/

 Our Process

– 1. State of Nature – Get your bearings

– 2. Action Correlation – Correlate user actions

– 3. Heap Normalization – Normalize to predictable state

– 4. Fixing in Contiguous Memory – Create necessary holes

– 5. Fixing in Logical Lists – Create necessary

– 6. Corruption – Invoke the attack

– 7. Exploitation – Move to code execution

66

http://www.phreedom.org/research/heap-feng-shui/
http://www.phreedom.org/research/heap-feng-shui/
http://www.phreedom.org/research/heap-feng-shui/
http://www.phreedom.org/research/heap-feng-shui/
http://www.phreedom.org/research/heap-feng-shui/

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 67

General Process

 1. State of Nature

– Get your bearings in a process post-corruption

– Questions:

 Is the Heap Cache likely to be invoked already?

 Is there a LAL on the Heap you are corrupting?

 Is there an LFH?

 How populated is the LAL?

 How about the free lists?

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 68

General Process

 2. Action Correlation

– Correlate user actions to allocation behavior

– Find the following:

 Permanent or long-living memory leaks

 Allocations where you control the contents of the first bytes

 Short-life memory leaks for timing allocations and frees

 The ability to free a buffer of an arbitrary size at an arbitrary time

 Allocations of arbitrary size for heap normalization and hole

creation,

 Information leaks

 Targets!

• Function pointers and other primitives in application data.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

General Process

 3. Heap Normalization

– Normalize the heap to predictable state

– LAL

– FreeList[n]

– Heap Cache

 Use Patterns!

– Invoke Heap Cache

– Fill Holes

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

General Process

 4. Fixing in Contiguous Memory

– Create necessary holes in memory
 5. Fixing in Logical Lists

– Create necessary logical relationships
 6. Corruption

– Invoke the attack
 7. Exploitation

– Move from immediate corruption to code

execution

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Nico’s Timeline for XPSP2

 1 day: Triggering the bug

 1-2 days: Understanding the heap layout

 2-5 days: Finding Soft and Hard Memleaks

 10-30 days: Overwriting a Lookaside Chunk

 1-2 days: Getting burned out, crying like a baby,

 trying to quit, doing group therapy

 2-5 days: Finding a Function pointer

 1-2 days: Shellcode

71

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation

Tools

Need a good, flexible programmatic debugging environment.

– Windbg/dbgeng seems like it would be a great
way to implement these.

– Pydbg

– Gera’s Heap Visualizer / Tracer

– Byakugen – (visualizer unpublished)

– Flashky’s Heap tool. (We haven’t seen it.)

– Myriad tools for normal programmers (UDMH, etc)
 These run out of utility for us pretty quicly.

Immunity Debugger!@#
These are quite useful (and there’s more)

– !funsniff

– !hippie

– !heap –d (target discovery)

We’ll kick back immunity debugger changes

 Or Dave can just grab them off our hard drives

72

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 73

Demo

(getting popcorn)

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 74

Demo

 And now to prove that we aren’t making all of this up…

 * Note: proof may be in the form of a prepared video of dubious veracity.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 75

Conclusion

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 76

Conclusion

 Although the mitigations have been introduced to the Windows Heap Manager for some
time there still exists ways to obtain reliable exploitation

 FreeListInUseBitMap can be leveraged to exploit 1-4 byte overflows

 The LAL exception handler can be used for brute forcing addresses to overwrite

 Heap Cache

– Can be used to normalize the heap to turn seemingly impossible exploitation
conditions into more workable scenarios

– Shadow FreeLists can provide trapdoors to prevent innocuous allocations /
linking searches from crashing the application before exploitation can occur

– Just like Brett Moore’s FreeList[0] techniques the heap cache can be used for
address overwriting, making code execution possible in the post-safe-unlinking
world.

IBM Internet Security Systems

© Copyright IBM Corporation 2009 Practical Windows XPSP3/2003 Heap Exploitation 77

Conclusion

 Microsoft has taken steps in the right direction with Vista Heap Manager

– ASLR, heap meta-data encryption, optional process termination upon corruption &
heightened focus on security

 We really hate the heap and it is the bane of our existence

FIN

(For those of you playing along from home, this is where the audience erupts into
spontaneous applause and weeping)

