Windows 8 Heap Internals

OaZimuth Windows 8 Heap Internals

¢) coverity-

INTRODUCTION

@ azimuth Windows 8 Heap Internals 0 coverity°

Who

e Chris Valasek (@nudehaberdasher)

— Sr. Research Scientist
— Coverity

e Tarjei Mandt (@kernelpool)
— Vulnerability Researcher
— Azimuth Security

@ azimuth ¢) coverity:

What

e Windows 8 Release Preview
e Heap manager specifics
e Exploitation techniques for Windows 8 heap

 Prerequisite reading

— “Understanding the LFH”

e http://illmatics.com/Understanding the LFH.pdf
e http://illmatics.com/Understanding the LFH Slides.pdf

— “Modern Kernel Pool Exploitation”
e http://www.mista.nu/research/kernelpool infiltrate2011.pdf

— Kostya, Hawkes, Halvar, McDonald, Moore, etc

@aZimUth Windows 8 Heap Internals 0 Coveritya

Why

 Learn how the Heap Manager and Kernel Pool
Allocator work (in detail)

— PLEASE read the paper if you want full details, this
presentation just touches the surface

 Heap exploits that worked on Windows 7 will
most likely NOT work on Windows 8

e Let’s find out why

@ azimuth ¢) coverity:

User Land Back-End

@aZimuth Windows 8 Heap Internals 0 CoverityG’

Windows 8 Back-end

e Slightly modified version of the Windows 7
back-end [RtlpAllocateHeap()]

* Mitigations

1. Freeing of HEAP structures is prohibited
(R.I.P Ben Hawkes tech)

2. Virtually allocated chunks now have randomized
locality/size

(S

@ azimuth ¢) coverity:

Windows 8 Back-end (cont.)

_HEAP @ 0x150000

+0xB4 — BlocksIndex

+0xCo — FreelLists

+0xD8 —

FrontEndHeapUsageData

+0xD8 —
FrontEndHeadStatusBitmap

Blocksindex @ [0x150150]
+0x000 ExtendedLookup : (null)
+0x004 ArraySize : 0x80
+0x00c ItemCount =8
+0x010 OutOfRangeltems : 1
+0x014 Baselndex 10
+0x018 ListHead : 0x1500c4
+0x01c ListsinUseUlong : 0x150174 -> Oxc0
+0x020 ListHints : 0x150184

A A

‘_I

ListHints @ 0x150184

ListHint [0x6] {0x30 Bytes}
Addr: 0x1501B4

Flink: 0x1508F0
Blink: NULL

FreeList[0x7] {0x38 Bytes}
Addr: 0x1501BC
Fl 0x150988
Blink: NULL

A 4

Addr : 0x1508F0
Size : 0x6 Blocks
Flink : 0x150890
Blink : 0x1500C4

A 4

Addr : 0x150890
Size : 0x6 Blocks
Flink : 0x150800
Blink : 0x1508F0

»

A 4

Addr : 0x150800
Size : 0x6 Blocks
Flink : 0x150988
Blink : 0x150890

\ 4

FreeList[0x7F] {> 0x3F8 Bytes}
Addr: 0x15057C
Flink: 0x1509F8
Blink: NULL

\ 4

Addr : 0x150988
Size : 0x7 Blocks
Flink : 0x1509F8
Blink : 0x150800

A 4

A 4

Addr : 0x1509F8
Size : 0xBE Blocks
Flink : 0x1500C4
Blink : 0x150988

Windows 8 Heap Internals

¢) coverity:

Back-end Mitigation |

* Prevents the freeing and subsequent allocation of a HEAP
structure in RtlpFreeHeap().

— https://www.lateralsecurity.com/downloads/hawkes ruxcon-nov-
2008.pdf

— Although the direct overwriting can still occur, it is unlikely

e Same holds true for RtlpReAllocateHeap()

@aZimUth Windows 8 Heap Internals 0 Coveritya

Back-end Mitigation | (cont.)

RtlpFreeHeap(HEAP *heap, DWORD flags, void *header, void *mem)
{
if(heap == header)
{
RtlpLogHeapFailure(9, heap, header, 0, 0, 0);
return 0;
}
}

@ azimuth ¢) coverity:

Back-end Mitigation Il

e Chunk that exceeds the VirtualMemoryThreshold will be
serviced by NtAllocateVirtualMemory()

* Previously, the allocations occurred with a potential for semi-
predictable locations and sizes

e Changes have been made to add a random offset to the base
address when allocating large chunks in RtlpAllocateHeap()

 Hope to encapsulate virtual chunk in inaccessible memory
(MEM_RESERVE)

* Note: If safe-linking fails the application will only terminate if
HeapTerminateOnCorruption has been set via
HeapSetinformation(), otherwise the chunk is NOT linked in
but still RETURNED

@ azimuth ¢) coverity:

Back-end Mitigation Il

//VirtualMemoryThreshold set to ©x7F000 in CreateHeap()

int request size = Round(request_ size)

int block size = request_size / 8;

if(block_size > heap->VirtualMemoryThreshold)

{
int rand offset = (RtlpHeapGenerateRandomValue32() & OxF) << 12;
request_size += 24;
int region_size = request_size + 0x1000 + rand_offset;

void *virtual base, *virtual_ chunk;

int protect = PAGE_READWRITE;
if(heap->flags & 0x40000)
protect = PAGE_EXECUTE_READWRITE;

//Attempt to reserve region_size bytes of memory

if(NtAllocateVirtualMemory (-1, &virtual base, @, ®ion_size, MEM_RESERVE, protect) < 9)
goto cleanup_and_return;

virtual chunk = virtual base + rand_offset;

if(NtAllocateVirtualMemory(-1, &virtual chunk, @, &request size, MEM COMMIT, protect) < 0)
goto cleanup_and_return;

//XXX Set headers and safe link-in

return virtual_chunk;

:@ azimuth ¢) coverity:

User Land Front End

@aZimuth Windows 8 Heap Internals 0 CoverityG’

Windows 8 Front-End

 Major changes to allocation and free
algorithms and moderate changes to integral
data structures

* RtlpLowFragHeapAllocFromContext() will not
be a “matched function” by BinDiff between
Windows 7 and Windows 8

 Mostly the same data structures but offsets
and members have changed a bit

@ azimuth ¢) coverity:

Windows 8 Front-End Mitigations

 Mitigations
1. Front-End Activation

e Dedicated counters/index instead of ListHint->Blink
e FrontEndHeapUsageData[] (See paper)

2. Front-End Allocation

e FreeEntryOffset removed
. Non-deterministic allocations

3. Fast Fail

e RtlpLowFragHeapAllocFromZone() implements fast fail
— Also additional checking compared to Windows 7

4. Guard Pages
5. Arbitrary Free Mitigation
6. Exception Handling Removal

@ azimuth ¢) coverity:

Windows 7 Front-End

_INTERLOCK_SEQ.Hint (i.e. FreeEntryOffset) is gathered
from the free chunk w/o validation

HEAP USERDATA HEADER _HEAP USERDATA HEADER

FreeE"h-yOﬁset Seerbee

=0x0000 SubSegment (_ HEAP_SUBSEGMENT)
+0x0004 Void *Reserved
+0x0008 ULONG32 Sizeindex

_HEAP_ENTRY FreeEntryOffset <User Data>
FreeEntIyOffset Serte

+0x000C ULONG32 Signature

©aZimuth Windows 8 Heap Internals o COVCI'itY°

Windows 7 Front-End Allocation O

UserBlocks

_HEAP_ENTRY <User Data> PGEIZEESNENE NextOffset <User Data> BEIEAEEENESS NextOffset <User Data> BGIELEEENEYE NextOffset <User Data>
0x0C 0x12 0x18

WG RSN NextOffset <User Data> [EI=LUGESNIEAE NextOffset <User Data> BLEIZ.GESNIAE NextOffset <User Data> MI=GE=NEAE NextOffset <User Data>
Ox1E 0x24 0x30

NSNS NextOffset <User Data> BGIEAENSNAA NextOffset <User Data> BGIEAEESNGAE NextOffset <User Data> JGISEGEENEGAS NextOffset <User Data>
0x3C 0x42 0x48

BRSNS NextOffset | <User Data> LIS GESNIINE NextOffset <User Data> BUISIGESNINGE NextOffset <User Data> BLISLGESNINE NextOffset <User Data>
O0x4E 0x54 0x5A

Depth = 0x0oF
FreeEntryOffset = 0x0

azimuth Windows 8 Heap Internals o (_:O‘ferit}f0

Windows 7 Front-End Allocation |

UserBlocks

_HEAP_ENTRY NextOffset <User Data> [EE2ENENAA NextOffset <User Data> R EN=ENIAE NextOffset <User Data>
ox0C 0x12 0x18

WG RSN NextOffset <User Data> [EI=LUGESNIEAE NextOffset <User Data> BLEIZ.GESNIAE NextOffset <User Data> MI=GE=NEAE NextOffset <User Data>
0x1E 0x24 0x30

DI ERENEAS NextOffset = <User Data> BGIEGHENGAY NextOffset <User Data> BGIEGEENGEAS NextOffset <User Data> BEIZSGEENGAS NextOffset <User Data>
0x3C 0x42 0x48

G T EHENAE NextOffset = <User Data> [A=-GH=NGAA NextOffset <User Data> [E=-GH="1EAA NextOffset <User Data> [EIF:EREE NextOffset <User Data>
0x4E 0x54 0x5A

Depth = 0x0E
FreeEntryOffset = 0x06

FREE | RH5)E

@aZimUIh Windows 8 Heap Internals o (_:O‘/e]:'it}f0

Windows 7 Front-End Allocation Il

UserBlocks

_HEAP_ENTRY _HEAP_ENTRY <User Data> B ERENIEAE NextOffset <User Data> [ELIS.GESNINE NextOffset <User Data>
0x12 0x18

RS GHENAA NextOffset | <User Data> [l GH= 11504
Ox1E

NextOffset <User Data> BEIEGESNIEYE NextOffset <User Data> BEIZAZNENIEAE NextOffset <User Data>
0x30

DI ERENEAS NextOffset = <User Data> BGIEGHENGAY NextOffset <User Data> BGIEGEENGEAS NextOffset <User Data> BEIZSGEENGAS NextOffset <User Data>
0x42 0x48

G T EHENAE NextOffset = <User Data> [A=-GH=NGAA NextOffset <User Data> [E=-GH="1EAA NextOffset <User Data> [EIF:EREE NextOffset <User Data>
0x4E 0x54 O0x5A 0x60

Depth = oxoD
FreeEntryOffset = 0xoC

FREE | RH5)E

azimuth Windows 8 Heap Internals o CO‘/C]:'it}]0

Windows 7 Front-End Allocation Il

UserBlocks

_HEAP_ENTRY _HEAP_ENTRY <User Data> _HEAP_ENTRY BRSNS NextOffset <User Data>
0x18

NextOffset <User Data> BEIEGESNIEYE NextOffset <User Data> BEIZAZNENIEAE NextOffset <User Data>
0x2A 0x30

NS GHEAA NextOffset | <User Data> A== 11504
Ox1E

DI ERENEAS NextOffset = <User Data> BGIEGHENGAY NextOffset <User Data> BGIEGEENGEAS NextOffset <User Data> BEIZSGEENGAS NextOffset <User Data>
0x42 0x48

G T EHENAE NextOffset = <User Data> [A=-GH=NGAA NextOffset <User Data> [E=-GH="1EAA NextOffset <User Data> [EIF:EREE NextOffset <User Data>
0x4E 0x54 O0x5A 0x60

Depth = 0x0C
FreeEntryOffset = ox12

|

azimuth Windows 8 Heap Internals o COVCI']t}ﬂ’

Windows 8 Front-End

No need to use the FreeEntryOffset as the Bitmap does all the work

_HEAP_USERDATA_HEADER

UserBlocks

=0x0000 SubSegment (HEAP_SUBSEGMENT)
EntryOffset w/in the UserBlocks I _HEAP_ENTRY <User Data>

kept in _ HEAP_ENTRY.PreviousSize
+0x0004 Void *Reserved

_HEAP_ENTRY <User Data>

+0x0008
STRUCT
{
UINT8 Sizeindex;
UNIT8 GuardPagePresent;

UINT16 PaddingBytes;

}

_HEAP_ENTRY <User Data>

_HEAP_ENTRY <User Data>

+0x000C ULONG32 Signature

=0x0010 UINT16 FirstAllocationOffset _RTL_BITMAP

+0x0000 ULONG32 SizeOfBitmap

+0x0012 UINT16 BlockStride

+0x0004 ULONG32* Buffer

+0x0014 RTL BITMAP BusyBitmap

+0x001C ULONG32 BitmapData

Windows 8 Heap Internals o COVCI'itY°

Windows 8 Randomization

 RtlpLowFragHeapRandombData initialized from
RtipCreateLowFragHeap and Slotindex is updated on
_HEAP_SUBSEGMENT creation [RtlpSubSegmentlinitialize()]

RtlpInitializelLfhRandomDataArray()
{
int RandIndex = 0;
do
{
//ensure that all bytes are unsigned
int newrandl = RtlpHeapGenerateRandomValue32() & Ox7F7F7F7F;
int newrand2 = RtlpHeapGenerateRandomValue32() & Ox7F7F7F7F;
RtlpLowFragHeapRandomData[RandIndex] = newrandl;
RtlpLowFragHeapRandomData[RandIndex+1] = newrand2;
RandIndex+=2;
}
while(RandIndex < 64)
}

@ azimuth ¢) coverity:

Windows 8 Front-End Allocation O
UserBlocks

HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
= - < > = ¥ < > & . < > = » < >
PSize = 0x00 Ser{tiats PSize = 0x01 Eser{tiatn PSize = 0x02 Kmer ata PSize=0x03 fiwoxiats

_HEAP_ENTRY

_HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY

< > < > < > < >
PSize=0x04 User Data PSize=0x05 User Data PSize=0x06 User Data PSize=0x07 User Data
HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
= = <User Data> - = <User Data> - = <User Data> = - <User Data>
PSize=0x08 PSize=0x09 PSize=0x0A PSize=0x08
HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
- = <User Data> - = <User Data> - = <User Data> - = <User Data>

PSize=0x0C PSize=0x0D PSize=0x0E PSize=0x0F

Depth = 0x0OF ﬁ

0Xx0 OoxF

FREE | FREE | FREE | FREE | FREE FREE FREE FREE| FREE FREE| FREE FREE FREE FREE FREE FREE

azimuth Windows 8 Heap Internals o COVCritY°

Windows 8 Front-End Allocation |

_HEAP_ENTRY <U Data> _HEAP_ENTRY
PSize = 0x01 s PSize = 0x02
_HEAP_ENTRY ANar Dt _HEAP_ENTRY
PSize=0x05 PSize = 0x06

HEAP_ENTRY
= - < >
PSize = 0x00 Simer/Eiats

_HEAP_ENTRY

HEAP_ENTRY
< > = - < >
User Data FEL A User Data:

_HEAP_ENTRY

< > = < > < >
ST User Data AAE User Data PSize=Oxlll User Data
HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
- = <User Data> - = <User Data> - = <User Data> - <User Data>
PSize=0x08 PSize=0x09 PSize=0x0A PSize=0x08
HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
= = < > = = < > = = < > = = < >
PSize=0x0C User Data PSize=0x0D User Data PSize=0x0E User Data PSize = 0x0F User Data

Start = RandRand(o, Bitmap.SizeofBitmap);
Index = CicularSearch(Bitmap, Start)
UpdateBitmap(Bitmap, Index)

Return UserBlocks[Index]

Index = 0x5

Depth = oxo: |wos| [

0x0 oxF

BUSY

@aZimu‘Ih Windows 8 Heap Internals o (_:O‘fe]:'it}f0

UserBlocks

Windows 8 Front-End Allocation Il

_HEAP_ENTRY

PSize=0x00 <User Data>
FHEVE <UserDate>
PR <User Date>
BZT::;E:JEY <User Data>

HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
= o < > = . < > = »
PSize = 0x01 Eser{tiatn PSize = 0x02 Kmer ata PSize=0x03

_HEAP_ENTRY R _HEAP_ENTRY <U Data> _HEAP_ENTRY
PSize=0x05 PSize = 0x06 SR PSize=0x07
HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
- <User Data> - = <User Data> -
PSize=0x09 PSize=0x0A PSize=0x08
HEAP_ENTRY HEAP_ENTRY HEAP_ENTRY
- = < > — » < > - =
PSize=0x0D UserData PSize=0x0E PSize=0x0F

<User Data>

<User Data>

<User Data>

<User Data>

Depth = oxoD

0XO0O

BUSY

Start = RandRand(o, Bitmap.SizeofBitmap);
Index = CicularSearch(Bitmap, Start)
UpdateBitmap(Bitmap, Index)

Return UserBlocks[Index]
Index = oxE

oxF

FREE ‘ FREE ‘ FREE ‘FREE ‘ FREE ‘ BUSY FREE ‘FREE ‘ FREE ‘FREE ‘ FREE ‘ FREE ‘FREE ‘ FREE ‘M‘
|

@azimuth

Windows 8 Heap Internals

¢) coverity:

Windows 8 Front-End Allocation Ili
UserBlocks

_HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY
BT aab <User Data> <User Data> <User Data> FEL A <User Data>
_HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY
-HI_EAP-ENTRY <User Data> <User Data> <User Data> <User Data>
PSize=0x08 PSize=0x09 PSize=0x0A PSize=0x08
_HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY
Dep th = oxoD |FREE| [RES% Start = Ra.ndRand(O, Bltl.nap.SlzeofBltmap) ;
| Index = CicularSearch(Bitmap, Start)
UpdateBitmap(Bitmap, Index)
Return UserBlocks[Index]
15t Try => Index = 0x5
Next => Index = 0x6
0Xx0 oxF

@ azimuth Windows 8 Heap Internals o (:O‘/erit}f0

Win 7 vs Win 8 Allocation

e Windows 7

— Will sequentially allocate chunks from the UserBlock

— No validation of FreeEntryOffset, hence it can be
overwritten and used as an exploitation primitive

e Windows 8

— Randomized array used to search a bitmap

— Bitmap will select the chunk, update itself and use a
different random location each time

— Heap determinism goes down significantly

— FreeEntryOffset no longer kept in user data, therefore
FreeEntryOffset Overwrite technique has died ®

@ azimuth ¢) coverity:

Windows 8 Front-End Mitigation Il|

e Fast Fail
— INT Ox29 Interupt
— Designed to ensure ‘fast failing’

e http://www.alex-ionescu.com/?p=69

— Search “CD 29” (x86) and find instances all over
ntdll.dll

— Only one assertion in the LFH, otherwise use the
RtlpLogHeapFailure() function and rely upon
HeapTerminateOnCorruption flag

@ azimuth ¢) coverity:

Windows 8 Front-End Mitigation Il|

 Bad News: Windows 8 checks LFH->SubSegmentZones

_HEAP_SUBSEGMENT *RtlpLowFragHeapAllocateFromZone(_LFH_HEAP *LFH, int AffinityIndex)
{
_LIST_ENTRY *subseg zones = &LFH->SubSegmentZones;
if (LFH->SubSegmentZones->Flink->Blink != subseg zones ||
LFH->SubSegmentZones->Blink->Flink != subseg zones)
__asm{int 29};
}

e Good News: Windows 7 has less strict checks

— Potential for write-4 primitive ©

@ azimuth ¢) coverity:

Windows Front-End Mitigation IV

 Guard Pages were added between
_HEAP_USERDATA HEADER objects to foil
overwrites and heap spraying

e Therefore, an overflow will need to exist in the
same UserBlock, potentially guarding other
UserBlock containrs.

e After a certain amount of chunks exist for a
certain size a guard page will be added for
subsequent UserBlock creations

e |f page_shift ==0x12 || total_blocks >= 0x400
— Add a guard page to the allocation

@ azimuth ¢) coverity:

Windows Front-End Mitigation IV

RtlpLowFragHeapAllocFromContext ()

{
//determine if we should use a guard page
set _guard = false;
//The total amount of chunks available for a _HEAP_SUBSEGMENT
int total _block = HeaplLocalSegInfo->Counters.TotalBlocks;
if(total blocks > 0x400)
total blocks = 0x400;
//there are other operations here, left out for brevity
int page_shift = 7;
int req_size = total blocks * RtlpBucketBlockSizes[HeapBucket->SizeIndex] + 8;
req_size = req_size + Round32(total blocks) + 0x24;
do
page shift++;
while(req_size >> page_shift);
if(page_shift == 0x12 || total_blocks >= 0x400)
set_guard = true;
//will allocate memory for the UserBlocks and add a guard page if necessary
RtlpAllocateUserBlock(LFH, page_shift, BucketByteSize, set_guard);
}

@aZimUth Windows 8 Heap Internals 0 Coveritya

Windows Front-End Mitigation IV

RtlpAllocateUserBlock calls RtlpAllocateUserBlockFromHeap

RtlpAllocateUserBlockFromHeap(HEAP *heap, int size, bool set guard)
{

_HEAP_USERDATA_HEADER *user_block = RtlAllocateHeap(heap, 0x800001, size - 8);
if(set_guard)
{

int page_size = 0x1000;

//get the page aligned address then caluculate the size

//plus one page (0x1000)

int page_end_addr = (user_block + (size - 8) + OxFFF) & OxFFFFF000;

int new_size = page _end_addr - user_block + page size;

//reallocate with an additional page of memory appended
user_block = RtlReAllocateHeap(heap, 0x800001, user_block, new size);

//make the last page of this memory PAGE_NOACCESS
ZwProtectVirtualMemory(-1, &new_size, &page size, PAGE_NOACCESS, &output);

user_block->GuardPagePresent = true;

}

return user_block;

@ azimuth ¢) coverity:

Windows Front-End Mitigation IV

Low Address
UserBlocks 1 for HEAP BUCKET[0x6]
Overflow
Direction
Contiguous
UserBlocks 1 for HEAP_BUCKET[0x8] Memory
UserBlocks 2 for HEAP_ BUCKET[0x6]
Higher Address

@aZimuu'] Windows 8 Heap Internals o COVCritY°

Windows Front-End Mitigation V

e Ben Hawkes devised a technique to turn an overwrite of a LFH
chunk into a semi-arbitrary free

— https://www.lateralsecurity.com/downloads/hawkes ruxcon-nov-
2008.pdf

— Overwrite ‘Flags’ and ‘Index’ to point at a valid chunk within the
UserBlock

— Therefore you can taint a overflowed header, point to a legitimate, in-
use chunk and free it

— Win!
e There are checks to ensure that this will no longer work ®

@ azimuth ¢) coverity:

Windows Front-End Mitigation V

Rt1FreeHeap(_HEAP *Heap, DWORD Flags, void *Mem)

{
//if the header denotes a different segment
//then adjust the header accordingly
_HEAP_ENTRY *header = Mem - 8;
if(Mem - 1 == 0x5)
header -= 8 * header->SegmentOffset;
if(!(header->UnusedBytes & Ox3F))
{
//this will prevent the chunk from being freed
RtlpLogHeapFailure(8, Heap, header, 0,0,0);
header = NULL;
}
}

<“ aZimUth Windows 8 Heap Internals

¢) coverity:

Windows Front-End Mitigation V

if(Mem - 1 == Ox5)

{
//this chunk was from the LFH
if(header->UnusedBytes & 0x80)
{
//ensures that the header values haven't been altered
if(!RtlpvalidateLFHBlock(Heap, header))
{
RtlpLogHeapFailure(3, Heap, header, Mem, 0, 0);
return 0;
}
}
}

@aZimuth Windows 8 Heap Internals 0 Coverity®

Windows 8 Front-End Mitigation VI

e Windows 7 wrapped
RtlpLowFragHeapAllocFromContext() in a
try/catch that would handle any exception

e |'ve speculated that this could be used to
‘brute force’ address overwrites if multiple
memory corruptions were a possibility.

e This is REMOVED in Windows 8 ®

®

§9 azimuth ¢) coverity:

Summary
m

Heap Handle Protection
|

[]
[]

Virtual Memory
Non-Determinism

]
[]

FrontEndStatusBitmap

[]
[]

LFH Non-Determinism

]
]

Fast Fail
Guard Pages

]
]

Arbitrary Free Protection

%]
[]
NN NN NN

]
]

Exception Handler
Removal

©aZimuth Windows 8 Heap Internals o COVCritY°

User Land Exploitation Tech

@aZimu‘th Windows 8 Heap Internals 0 (:O‘/'erit)f®

Bitmap Flipping 2.0

e A LFH chunk’s index within the UserBlock is still kept in an un-
encoded fashion

— _HEAP_ENTRY.PreviousSize
— Used to update the UserBlock->Bitmap

e bittestandreset(UserBlocks->BusyBitmap->Buffer, header->PreviousSize);
— Zero out certain bits relative to the address of the BusyBitmap
— PROBLEMS

The UserBlock is taken from the _HEAP_SUBSEGMENT

SubSegment derived from chunk header

SubSegment = *(DWORD)header » (header / 8) » heap " RtlpLFHKey;
UserBlocks = SubSegment->UserBlocks;

Corruption the chunk header (via sequential overflow) will wreck the SubSegment

¢) coverity:

Bitmap Flipping 2.0

BusyBitmap.Size = 0x4

_HEAP_ENTRY BAD _HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY
UserBlocks
_HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY Chunks
_HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY _HEAP_ENTRY

By making the PreviousSize of a chunk header to free larger
than BusyBitmap.Size, an attacker can NULL out bits.

@aZimu‘th Windows 8 Heap Internals 0 (:O‘/'erit)f®

HEAP USERDATA HEADER Attack

e Attack the new HEAP_USERDATA_HEADER structure
(aka UserBlocks)

 Has a member called BlockStride, which denotes the amount of space
between each chunk
— Also FirstAllocationOffset can be targeted as well
e Used to return the proper chunk to the calling application
— Chunk = UserBlocks + RandIindex * BlockStride + FirstAllocationOffset
e Effectively the same as Windows 7 FreeEntryOffset overwrite
e PROBLEMS

— Guard pages if too many allocations are made of the same size
e Stagger allocation sizes [i.e. alloc(0x40) x 10; alloc(0x48) x 10, etc)

— You have to position your overflow-able chunk BEFORE a
_HEAP_USERDATA_HEADER structure (which can be challenging)

— Tainting the _RTL_BITMAP structure could cause more instability

— if ((ret_chunk->UnusedBytes & Ox3F))
e RtlpLogHeapFailure()

@ azimutn ¢) coverity-

_HEAP USERDATA HEADER Attack

_HEAP USERDATA HEADER

+0x0000 - SubSegment +0x0004 - Reserved

0x0010 -

FirstAllocationOffset P

_HEAP_ENTRY

Memory
Chunks

_HEAP_ENTRY
_HEAP_ENTRY

+0x0000 - SubSegment +0x0004 - Reserved

0x0010 -

FirstAllocationOffset UXUOTZ=EIOTRSUTY

_HEAP_ENTRY
_HEAP_ENTRY

_HEAP_ENTRY

azimuth

+0x0006 - SizelndexPadding

+0x0014 — BusyBitmap

+0x000C - Signature

+0x001C - BitmapData

_HEAP_ENTRY

_HEAP_ENTRY

_HEAP_ENTRY

+0x0008 - SizelndexPadding

+0x0014 — BusyBitmap

+0x000C - Signature

+0x001C - BitmapData

_HEAP_ENTRY

HEAP ENTRY

_HEAP_ENTRY

Windows 8 Heap Internals

Contiguous
Memory

¢) coverity:

" HEAP USERDATA HEADER Attack

_HEAP_USERDATA_HEADER

AL

‘4

+0x0000 - SubSegment

+0x0004 - Reserved +0x0006 - SizelndexPadding

0x0012 - BlockStride +0x0014 — BusyBitmap

+0x000C - Signature

+0x001C - BitmapData

~

Overflow

HEAP ENTRY

HEAP ENTRY

_HEAP_ENTRY

_HEAP_ENTRY

Windows 8 Heap Internals

Contiguous
> Memory

7
{) coverity*

Kernel Pool

Windows 8 Heap Internals

¢) coverity:

Kernel Pool

e Deterministic allocator
— First chunk allocated from top of page
— Subsequent chunks allocated bottom-up

e Uses traditional doubly linked free lists
— Ordered by block size

* Focused on efficiency

— Uses lookaside lists for small chunks

e Used by drivers and system components

@ azimuth ¢) coverity:

Pool Types

 Generally two types of pool memory
* Non-paged pool
— Guaranteed to be present at any time
— Can be accessed by any code, regardless of IRQL

e Paged pool
— Can be paged out
— Can only be accessed at IRQL < DPC/Dispatch level

@ azimuth ¢) coverity:

Pool Descriptor

* Each pool is managed by a pool descriptor

* Primarily manages lists of free pool chunks

— Ordered by block size
e x86: 8 bytes
e x64: 16 bytes

— Used for allocations up to 4080 bytes

e Also keeps track of no. of allocations/frees,
pages in use, etc.

@ azimutn ¢) coverity-

Pool Header

e Each pool chunk is preceded by a pool header

— Defines size of previous/current chunk, pool type,
associated pool descriptor and process pointer

e kd>dt nt! POOL_HEADER
— +0x000 PreviousSize : Pos 0, 8 Bits
— +0x000 Poollndex : Pos 8, 8 Bits
— +0x000 BlockSize : Pos 16, 8 Bits
— +0x000 PoolType : Pos 24, 8 Bits
— +0x004 PoolTag : Uint4B
— +0x008 ProcessBilled : Ptr64 EPROCESS

@ azimuth ¢) coverity:

Windows 8 Kernel Pool

@aZimuth Windows 8 Heap Internals 0 COVCI'itY“’

Windows 8 Kernel Pool

e Hardened version of the Windows 7 kernel pool
— No significant structure changes

* |ncludes a lot more sanity checks
— Pool header validation (e.g. Poolindex)
— Linked list validation
— Cookies used to protect pointers

e |ntroduces the NX non-paged pool

— Designed to prevent injection of executable kernel
code in non-paged memory

@ azimutn ¢) coverity-

NX Pool

 Windows 8 introduces the non-executable
(NX) non-paged pool
— New pool type: NonPagedPoolNx (0x200)
— Most non-paged pool allocations now use this

— NT objects (e.g. reserve objects) can no longer be
used to store shellcode

 Requires the system to have enabled DEP
— If disabled -> nt!ExpPoolFlags & 0x800

@ azimuth ¢) coverity:

NX Pool Descriptor

 Windows 8 allocates two pool descriptors per
non-paged pool
— Executable and non-executable

e Separate non-paged NX lookaside lists

 The kernel calls nt!MmIsNonPagedPoolNx to
determine if a chunk is non-executable

— Looks up PTE/PDE and checks NX bit
— E.g. used by the free algorithm

@ azimuth ¢) coverity:

Kernel Pool Cookie

e Used to protect pointers referenced by both
freed and allocated pool chunks

— Lookaside lists
— Process object pointers

* Also used to protect certain cache aligned
allocations

 |nitialized upon boot (nt!InitializePool)
e Randomized with several system counters

@ azimuth ¢) coverity:

Windows 8 Pool Cookie Initialization

ULONG_PTR Value;
KPRCB * Prcb = KeGetCurrentPrcb();
LARGE_INTEGER Time;

KeQuerySystemTime(&Time);
Value = rdtsc(Q » // tick count

Prcb->KeSystemCalls ~ // number of system calls
Prcb->InterruptTime ~ // interrupt time

Time.HighPart » // current system time
Time.LowPart ~
ExGenRandom(0) ; // pseudo random number

ExpPoolQuotaCookie = (Value) ? Value : 1;

From the Windows 8 Release Preview

@ azimuth ¢) coverity:

ExGenRandom()

 Generates a pseudo random number

e Based on the Lagged Fibonacci Generator (LFG)
—j=24, k=55

— Seeded by boot entropy in the loader parameter block
(nt!KeLoaderBlock)

e Used by a number of functions
— Image base randomization
— Peb randomization
— Stack cookie generation

@ azimuth ¢) coverity-

Boot Entropy

 Gathered by winload from six sources
— OslpGatherSeedFileEntropy
— OslpGatherExternalEntropy
— OslpGatherTpmEntropy
— OslpGatherTimeEntropy
— OslpGatherAcpiOemOEntropy
— OslpGatherRdrandEntropy

 The latter uses the RDRAND instruction
— New PRNG introduced in vy Bridge CPUs

@ azimuth ¢) coverity:

Process Pointer Attack

e Quota charged allocations store a pointer to
associated process object

— X86: Last 4 bytes of the pool allocation
— X64: Last 8 bytes of the pool header

 When an allocation is freed, the used quota is
returned to the process

e On Windows 7, overwriting the process

pointer could allow an attacker to decrement
arbitrary memory

@ azimuth ¢) coverity:

Process Pointer Attack

Address of executive process object
controlled by the attacker

EPROCESS |

1
1
I
EPROCESS_QUOTA_BLOCK :
1

Usage counter decremented on free,
for which the address is controlled by
the attacker

Quota charged pool allocation (x86)

Process
Pointer

Pool Header Pool overflow Pool Header

[

azimuth Windows 8 Heap Internals o COVCI'itY°

Process Pointer Encoding

 Windows 8 addresses this attack by XOR
encoding the process pointer

— PoolCookie XOR PoolAddress XOR ProcessPointer

— Also checks if the decoded pointer points into
kernel address space (nt!MmSystemRangeStart)

e Checked upon pool free in
nt!ExpReleasePoolQuota

@9 azimuth ¢) coverity:

®

Pool Header

Process Pointer Encoding

b: PoolAddress
|)

1
1 ExpPoolQuotaCookie
L

Encoded

Pool overflow Process Pool Header

% / Pointer

Is ProcessObject above
nt!MmSystemRangeStart

ProcessObject

No

KeBugCheckEx(BAD_POOL_CALLER)

yal

Quota charged allocation

Encoded pointer to quota charged
process released on free

Windows 8 Heap Internals

¢) coverity:

Lookaside Pointer Attacks

* Lookaside lists are used for fast allocation
— Does not require pool descriptor locking (fast!)
— Singly linked
— Atomic compare and swap

 In Windows 7, an attacker could overflow into
a freed chunk and corrupt the lookaside list

— Control the address of the next chunk on the list

@9 azimuth ¢) coverity:

®

Lookaside Pointer Encoding

e Windows 8 protects each lookaside entry using a
randomized cookie, checked upon allocation

— PoolCookie XOR PoolAddress

— x86: cookie stored immediately after the pool header

— x64: cookie stored in the last 8 bytes of the pool
header

e Also used to protect entries on the pending frees
list

 Note: No cookie used for protecting pool page
lookaside lists

@ azimuth ¢) coverity:

Lookaside Pointer Encoding

1
] PoolAddress :

| ExpPoolQuotaCookie l

Pool Header Pool overflow Logg(oal;:;le

Free pool chunkina Pointer to next chunkon list
lookaside list protected by a lookaside cookie

©aZimuth Windows 8 Heap Internals o COVCI'itY°

Cache Aligned Allocations

 Pool allocations can be requested to be cache
boundary aligned
— PoolType & 4 (e.g. NonPagedPoolCacheAligned)

e Allocator ensures that a cache aligned address is
found by increasing the size requested

— Rounds up to the nearest cache line size + cache line
size (nt!ExpCachelineSize)

e Favors performance over space usage
— x86: 0x40 byte request -> 0xCO byte allocation
— Does not bother with returning unused bytes

@ azimuth ¢) coverity:

Cache Aligned Allocation Cookie

 Windows 8 inserts a cookie in front of a cache
aligned allocation if space is available

— Embedded by the unused (dummy) chunk
e *UnusedChunk = UsedChunk ™ PoolCookie

* CacheAligned (4) pool type is used to mark the
presence of this cookie

— Masked away if the allocation already was cache
aligned or insufficient space was available

@ azimuth ¢) coverity:

Cache Aligned Allocation Cookie

PoolAddress :

Pool SHaars
Pool Header : wsed data Pool Header
Cookie
Pool cookie protects cache L ,
aligned allocation Allocation is cache aligned

©aZimuu‘| Windows 8 Heap Internals o COVCI'itY°

Safe Unlinking

e Introduced in the kernel pool in Windows 7
— Response to LIST_ENTRY attacks on XP/Vista

* Ensures adjacent elements on a doubly linked
list point to the chunk being unlinked

 Checks were generally made when a chunk
was unlinked
— No checks when linking in a pool chunk

@ azimuth ¢) coverity-

(S

®

Safe (Un)linking in Windows 8

e Performs both safe linking and unlinking
— When allocating chunks from a free list
— When freeing chunks to a free list

e This also includes unused pool fragments

e Validates Flink/Blink of both pool descriptor
list entry and the chunk to be allocated

— Incomplete validation in Windows 7 allowed for
Flink attacks

@ azimuth ¢) coverity:

Safe Unlinking in Windows 8

Checks Flink
chunk to be
Checks Flink of allocated
free list entry

Checks Blink of
free list entry

Blocksize n J

PoolDescriptor.ListHeads
Ip_| Checks Blink of

chunk to be
allocated

Windows 8 Heap Internals

of

-J---

-| Free chunks I

¢) coverity:

Poollndex Attack

 Windows 7 didn’t check the Poollndex to the
associated pool descriptor upon pool free

— Used as array index for looking up pointer

* An attacker could overwrite the pool index to
control the pool descriptor
— Out-of-bounds entry -> null pointer

— Mapping the null page allowed control of the pool
descriptor and where chunks were inserted

@ azimuth ¢) coverity:

Poollndex Attack

| NULL Paged Pool Descriptor l

* 0

The virtual null page is
mapped to control the

Freed pool chunk
0

Pool Header

contents of the «null» paged
pool descriptor

~

il

-

g : x @ 2
HHEHEE
AHHE
ele|a]e 3 100h
o
104h
PoolIndex set to 5 pr— Ln Pool Header
: taon + (L Bk —>
N*8

)

-
o

<
i

Attacker-controlled
pointers

Updated with pointer to
freed chunk

[
|

| nt!ExpPagedPool Descriptor l

OaZimUlh Windows 8 Heap Internals o COVCI'itY'

Poollndex Fix

 Windows 8 addresses the Poolindex attack by
checking the value properly before freeing

— E.g. is Poollndex < nt!lExpNumberOfPagedPools

 The attack is also neutralized through proper
checks when “linking in”

* Additionally, user processes can no longer
map the null page
— VDM disabled by default (32-bit)

@ azimuth ¢) coverity:

Summary

i L v i L s o

Safe Unlinking
Safe Linking

Pool Cookie

Lookaside Chunks
Lookaside Pages

PendingFrees List
Cache Aligned

Allocations

Poollndex Validation
Encoded Process Pointer
NX Non-Paged Pool

@azimulh

X [[x [

X [x] [x]

* Windows 8 (RP) also addresses the ListHeads Flink attack

Windows 8 Heap Internals

[[[x] [

%] [x]

M

N N K N

N N

¢) coverity:

Block Size Attacks

@aZimuth Windows 8 Heap Internals 0 CoverityG’

Block Size Attacks

 The pool header is still subject to attacks as no
encoding is used

e Some fields can be hard to properly validate
— How big is a pool chunk really?

* An attacker can overwrite the block size of a

chunk to extend a limited overwrite to an n-
byte corruption

— BlockSize Attack
— Split Fragment Attack

@ azimuth ¢) coverity:

BlockSize/PreviousSize

e Used for indicating the size of a block
e Used by the allocator in coalescing

— Checks if adjacent chunks are free and merges to
reduce fragmentation

e Also used in validation upon pool free
— FreedChunk.BlockSize == NextChunk.PreviousSize

— The exception to this rule is when the next chunk
is on the next page (PreviousSize is null)

@ azimuth ¢) coverity:

BlockSize Attack

* When a chunk is freed, it is put into a free list
or lookaside based on its block size

e An attacker can overwrite the block size in
order to put it into an arbitrary free list

o Setting the block size to fill the rest of the
page avoids the BlockSize/PreviousSize check
on free

@ azimuth ¢) coverity:

BlockSize Attack

Overwrites the

BlockSize of an
allocated chunk

Frees chunk with the Corgﬁﬁ':kﬁ talfent
new block size arbitrary data
o N 4 -

Windows 8 Heap Internals

¢ coverity*

BlockSize Attack Steps

e Corrupt the block size of an in-use chunk
— Set it to fill the rest of the page

* Free the corrupted pool chunk

— Allocator puts the chunk in the free list/lookaside
for the new size

e Reallocate the freed memory using something
controllable like a unicode string

— Arbitrary pool corruption

@ azimuth ¢) coverity:

Split Chunk Pool Allocation

* When requesting a pool chunk, the allocator
scans the free lists until a chunk is found

— If larger than requested, splits and returns the
remaining bytes

A good amount of sanity checking
— Validates the Flink/Blink of the chunk to be allocated

— Validates the Flink/Blink of the free list entry
— Validates the pool index for the allocated chunk

e No validation on block size

@ azimuth ¢) coverity:

Split Fragment Attack

 Enables an attacker to extend a 3 byte (semi-
controlled) overwrite into an n-byte pool
corruption

— Targets the BlockSize of chunk in a pool descriptor
free list

o |f BlockSize is set to a larger value, the
remaining bytes are returned to the allocator

— Can free fragments of in-use memory

@ azimuth ¢) coverity:

Split Fragment Attack

Overwrites the BlockSize overwrite In allocating the block, An attacker can gain
BlockSize of a chunk causes block to overlap the remaining fragment control of the
on a free list the next chunk is returned free memory
| 4 % o N\ o N >

OaZimth Windows 8 Heap Internals o CoveritY'

Split Fragment Attack Steps

 Corrupt the blocksize of a free chunk

— Set it to something larger

e When the block is allocated, the allocator
splits it based on the blocksize value

— Remaining fragment is returned to the free list

e Reallocate the freed memory using something
controllable like a unicode string

— Arbitrary pool corruption

@ azimuth ¢) coverity:

Conclusions

Windows 8 Heap Internals

¢) coverity:

Determinism

e Unlike the Windows 8 heap, the kernel pool
remains highly deterministic

— Biased towards efficiency, e.g. in the use of
lookaside lists

* Allows an attacker to very accurately
manipulate the state of the kernel pool

e Because of this, attacks on pool content is a
likely attack vector on Windows 8

@ azimuth ¢) coverity:

Block Size Attacks

e Block size attacks rely on pool determinism
— Reducing it could reduce feasibility

 Some block size attacks can be addressed by
improving the validation

— E.g. check if the block size of a chunk held by a
free list is of the expected size upon allocation

 Generally requires the attacker to do very
specific pool manipulation
— May be impractical in some cases

@ azimuth ¢) coverity:

User Land Closing Notes

 Windows 7 Exploitation tech has been
addressed in Windows 8

e Determinism is at an all time low

 That being said, there are still viable attacks
— HEAP_ USERDATA HEADER Attack

e Also, since the LFH is grouped by size, use-
after-free vulnerability exploitation hasn’t too
drastically

@ azimuth ¢) coverity:

Kernel Pool Closing Notes

o Attacks previously demonstrated on Windows
7 have (mostly) been addressed in Windows 8

— Proper safe linking and unlinking
— Randomized cookies used to protect pointers

* Pool header is not protected (e.g. encoded)
— An attacker can overflow into an in-use chunk
— No need to repair pool structures

e Various lookaside lists are still not protected
— E.g. pool page lookaside list

@ azimuth ¢) coverity:

Questions?

Windows 8 Heap Internals

¢) coverity:

Conclusions

Windows 8 Heap Internals

¢) coverity:

